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Abstract 

 

The field of project scheduling has received a great deal of study for many years with a steady 

evolution of problem complexity and solution methodologies.  As solution methodologies and 

technologies improve, increasingly complex, real-world problems are addressed, presenting 

researchers a continuing challenge to find ever more effective means for approaching project 

scheduling.  This dissertation introduces a project scheduling problem which is applicable across a 

broad spectrum of real-world situations.  The problem is based on the well-known Resource-

Constrained Project Scheduling Problem, extended in this dissertation to include generalized 

precedence with minimal and maximal time lags and expediting resources.  The problem is further 

extended to include multiple projects which have generalized precedence, renewable and 

nonrenewable resources, and expediting resources at the program level.   

The problem presented in this dissertation is one not previously addressed in the literature nor 

is it one to which the existing specialized project scheduling methodologies can be directly applied.  

This dissertation presents a decomposition approach for solving the problem, including algorithms 

for solving the resulting decomposed subproblems and the master problem.  This dissertation also 

describes a methodology for generating instances of the new problem, extending the way existing 

problem generators describe and construct network structures and this class of problem.  The 

applicability of the methodologies presented is demonstrated through extensive empirical testing. 
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A DECOMPOSITION APPROACH FOR THE MULTI-MODAL, RESOURCE-

CONSTRAINED, MULTI-PROJECT SCHEDULING PROBLEM WITH GENERALIZED 

PRECEDENCE AND EXPEDITING RESOURCES 

I.  Introduction 

Overview 

The field of project scheduling has received a great deal of study for many years with a steady 

evolution of problem complexity and solution methodologies.  As solution methodologies and 

technologies improve, increasingly complex, real-world problems are addressed, presenting 

researchers a continuing challenge to find ever more effective means for approaching project 

scheduling.  This dissertation addresses a project scheduling problem which is applicable across a 

broad spectrum of real-world situations.  The total problem is one not previously addressed in the 

literature nor is it one to which the existing specialized project scheduling methodologies can be 

directly applied.  This dissertation presents a decomposition approach for solving the problem, 

including algorithms for solving the resulting decomposed subproblems and the master problem.  

This dissertation also describes a methodology for generating instances of the new problem, 

extending the way existing problem generators describe and construct network structures and this 

class of problem. 

Background 

The scheduling problem introduced by this dissertation is the Multi-Modal, Resource-

Constrained, Multi-Project Scheduling Problem with Generalized Precedence and Expediting 

Resources (MRCMPSP-GPR/EXP).  In most general terms, the goal of the MRCMPSP-

GPR/EXP is to identify a start time for each activity in a set of related activities in order to 

accomplish some objective, where various classes of resources exist and their quantity can be 

varied.  The way in which activities are related and the objective to be accomplished are what 

differentiate the MRCMPSP-GPR/EXP from other scheduling problems in the literature. 

A set of related activities is referred to as a project.  Projects can take on many forms, ranging 

from conducting cancer research or building a highway to running a political campaign or 

conducting a military operation.  A project may be as complex as designing and building a stealth 
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aircraft or as simple as planning a company picnic.  Whatever the nature of the project, its 

component activities are related in two ways.  First, activities may be precedence related.  If one 

activity cannot start until another activity has finished, the two activities are said to have a 

standard precedence relationship.  If, on the other hand, the start times of two activities are 

related, the activities are said to have a generalized precedence relationship.  More specifically, if 

Activity B cannot start until some time after the start of Activity A, then Activity A is a 

generalized predecessor of Activity B with a minimal time lag.  If Activity B must start before 

some time after the start of Activity A, then Activity A is a generalized predecessor of Activity B 

with a maximal time lag. 

As an example of precedence relationships, consider a few of the activities required to 

successfully launch two fighter aircraft.  Each fighter must be fueled and each must be loaded with 

bombs.  Typically, fueling the aircraft must be completed before the bomb loaders can begin their 

activity (fuel and bombs do not mix well).  Therefore, fueling and bomb loading have a standard 

precedence relationship where fueling precedes loading.  When it comes time for the fighters to 

take off, they can use the same runway, taking off one after the other, or they can use different 

runways and take off at the same time.  The key consideration, though, may not be that one takes 

off before the other, but that both take off at relatively close times so that they can rendezvous in 

the air and continue the mission without one having to wait a long time for the other.  In this case, 

their takeoff times exhibit a generalized precedence relationship.  If either Fighter A or Fighter B 

can take off first, but both must take off within a two-minute interval of each other, then one might 

say that Fighter A is a generalized predecessor of Fighter B with a minimal time lag of –2 minutes 

and a maximal time lag of +2 minutes.  In this way, Fighter B could actually take off before 

Fighter A, but in any case, they will both take off within the desired two-minute time interval. 

The second way activities can be related is by having a requirement for common resources.  

Both fighter aircraft require JP-4 fuel and a crew to do the fueling.  If the total amount of fuel 

available during an air campaign is fixed, then fuel is a nonrenewable resource; the fuel is gone 

once used.  Fueling crews, by contrast, are renewable resources, since they can be used repeatedly, 

but their availability at any given time is limited; there may be only two fueling crews on base.  

Other resources are doubly-constrained, being both renewable and nonrenewable.  Bombs would be 

doubly-constrained if their total availability during the air campaign were limited (making them 

nonrenewable) and if the number of bombs available at any given time were limited (making them 
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renewable).  This would be the case if a base could store only up to a specific number of bombs in 

its bomb dump.  Bomb loaders could not load more bombs at any given time than there are bombs 

currently in the bomb dump, but the bomb dump can be restocked up until the time that the total 

number of bombs available for the campaign are exhausted. 

Finding a start time for each activity in a project such that the precedence relationships are 

maintained and total usage of resources is within the limits of their availability is the act of 

scheduling.  To further complicate the scheduling process is the potential for multiple activity 

execution modes.  Activity execution modes are alternate ways to accomplish an activity and define 

the duration and resource requirements of the activity.  Suppose that the bomb dump in the above 

example needed to be replenished.  There are a number of ways this could be done.  The bombs 

could be loaded on two C-5 aircraft and flown straight to the base.  This might take a single day.  

The bombs could also be loaded on a supply ship, ferried to the nearest port, and then loaded on 

flatbed trucks for the rest of the journey to the base.  This might take two weeks.  Either option for 

restocking the bomb dump is a legitimate execution mode, and which mode is chosen depends on 

how much time and how many C-5, ships, and flatbed trucks are available.  

The choice of which mode is used to restock the bomb dump will likely affect other activities 

which depend on having bombs in the dump.  The choice of mode for restocking is, at the same 

time, affected by other activities and their execution modes.  Suppose the fighters will carry either 

four 2000-pound bombs or eight 500-pound bombs (two possible modes for striking targets).  If 

the bomb dump is out of 2000-pound bombs and the ship-flatbed mode is used to replenish them, 

either fighters will have to use 500-pound bombs for two weeks or strike missions will have to be 

delayed.  Consequently, the C-5 mode might be preferred.  Unfortunately, if C-5 aircraft are used 

for other activities and are unavailable during this time, the ship-flatbed mode may be the only 

mode possible.  (This dependency of activities on other activities is, in fact, a key motivator for 

careful a priori scheduling.) 

The careful selection of an execution mode for each activity is an important part of resolving 

resource conflicts and is an integral part of scheduling in the presence of multiple modes.  Which 

modes are selected will determine how long it takes to complete a project and will determine which 

resources are critical and which are not.  Resource limitations may force a scheduler to choose 

non-preferred modes or to delay activities.  In many situations, fortunately, resource limitations 

may be eased through expediting resources.  The concept of expediting resources is simply to 
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increase the availability of a critical resource to provide hopefully better scheduling options.  If 

additional C-5 aircraft could be obtained, then the bomb dump might be replenished sooner and 

better weaponeering modes made possible for strike missions.  In this situation, obtaining those C-

5s seems a logical decision.  However, there is a tradeoff.  While regularly available resources are 

assumed to be available at no cost (they are company-owned, so to speak), expediting resources 

are available only at a cost.  Expediting resources might be purchased, rented, or leased.  To a 

construction company, they might be temporary workers.  For the C-5s, they might be aircraft that 

need to be refurbished, they might be borrowed from another theater (in this case, the cost may not 

be dollars but opportunity cost to the lending theater), or they may be civilian aircraft with similar 

carriage capacity leased from a commercial air freight company. 

While modes and expediting resources both give schedulers greater flexibility, they are 

fundamentally different.  Modes typically trade greater resource requirements for shorter durations, 

while expediting resources affect the availability of resources (i.e., demand vs. supply).  Thus, 

modes enable shorter activity durations, while expediting resources enable a more compact 

schedule.  In other words, a scheduler can always select the modes which give the shortest activity 

durations possible.  This selection, however, may be resource-feasible only if some of the activities 

are delayed.  Expediting resources raise the limits on resource availability and can reduce the 

number of activities that need to be delayed (hence, a more compact schedule). 

To this point, the fundamentals of precedence relationships, resources, and activity execution 

modes have been explained.  These are the characteristics of the MRCMPSP-GPR/EXP that 

constrain which choices of execution modes, start times, and expediting resource use form feasible 

schedules.  Which of these feasible schedules is best, though, depends on the objective of the 

scheduler.  For the MRCMPSP-GPR/EXP, a variety of objectives are available.   

The most general objective of the MRCMPSP-GPR/EXP is to minimize the schedule cost.  

Costs come in three forms.  As previously mentioned, using expediting resources incurs a cost.  

The mode and start time selected for an activity may also incur a cost.  In a construction activity, 

the decision to hire skilled labor or unskilled labor is a mode choice which impacts the labor cost 

associated with the activity.  The activity may also require a cash outlay which increases over time 

so that a delay in the start of the activity results in an increase in the cash outlay.  The third type of 

cost is the project completion cost.  Many projects are either rewarded for finishing earlier than 
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planned or penalized for finishing later.  The bonus / penalty is a direct cost to the project (note 

that a bonus is just a negative cost). 

Other scheduling objectives are special cases of the cost minimization objective.  Some of these 

are described in Chapter III. 

The final characteristic of the MRCMPSP-GPR/EXP is its multi-project nature.  The 

importance of identifying a problem as representing a single project or as having multiple projects 

is in the decomposability of the problem.  In essence, a single-project problem and a multi-project 

problem are fundamentally the same except that the multi-project problem has distinct sets of 

activities in which the activities are in some way more strongly related.  A set of activities, for 

example, may use some types of resources not used by any other set.  Additionally, the activities in 

a set may have many precedence relationships with other activities in the set, but very few with 

activities in other sets.  When a problem can be subdivided into such distinct sets, the sets are 

tagged as projects and the set of projects is called a multi-project program.  By their nature, the 

multi-project program demonstrates a block-angular structure and can be decomposed using 

procedures such as that proposed by Sweeney and Murphy (1979).  The Sweeney-Murphy 

approach is used in this dissertation to facilitate the solution of decomposable problems. 

Though the MRCMPSP-GPR/EXP has not been addressed in the open literature, the literature 

is full of methodologies for solving related project scheduling problems.  Generally, attempts to 

solve project scheduling problems with more traditional techniques, such as general integer 

programming (IP) approaches, have been unsuccessful (Demeulemeester and Herroelen, 1992: 

1803).  Researchers have, therefore, turned towards the development of specialized algorithms for 

solving project scheduling problems.  This dissertation develops such an approach for the 

MRCMPSP-GPR/EXP, including algorithms for solving single- and multiple-project instances. 

There has also been an effort in the literature to develop problem generators to provide 

consistent test cases for the multitude of solution methodologies.  Unfortunately, most use 

measures of network complexity which provides inconsistent and confusing results (see Chapter 

IV).  By contrast, there is a measure of network complexity which is recognized to be far superior, 

but only one generator attempts to use this measure.  Even then, this generator constructs networks 

using the obsolete measure and then calculates the corresponding value of the superior measure.  If 

the network has the desired value, it is kept; otherwise, it is discarded and another network is 

constructed and tested. 
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This dissertation develops a methodology which constructs networks using the superior 

measure directly.  The network methodology is then built upon to develop a problem generator 

which is capable of generating all of the characteristics of the MRCMPSP-GPR/EXP.  No other 

generator is currently known to provide standard and generalized precedence, expediting resources, 

and multiple projects. 

Significant progress has been made since the 1950s in the field of project scheduling.  Even so, 

major gaps still exist.  As computational efficiency and power increase, new problems can be 

proposed to consider these gaps.  This dissertation considers such a problem area when considering 

multi-modal problems with expediting resources. 

Research Issues 

The problem of scheduling multi-project programs with multiple modes, generalized 

precedence, and expediting resources has not been addressed in the project scheduling literature.  

No specialized solution methodologies have been developed to solve the problem and standard 

integer programming approaches are currently inadequate for solving problems of this type in an 

operationally reasonable amount of time.  In addition, no existing problem generator is capable of 

constructing problems with the characteristics of the MRCMPSP-GPR/EXP.  Furthermore, the 

problem generators that are presented in the literature generally use measures of network 

complexity that poorly reflect the true nature of project networks. 

Research Objectives 

The research presented in this dissertation fills a number of voids in the expanding field of 

project scheduling.  Specifically, the research accomplishes the following objectives: 

1. It introduces the MRCMPSP-GPR/EXP to the project scheduling literature, including a 

mathematical formulation of the problem.  The problem includes: 

(a) Multiple activity execution modes. 

(b) Renewable, nonrenewable, and doubly-constrained resources. 

(c) Standard and generalized precedence between activities.  Generalized precedence 

includes both minimal and maximal time lags.  

(d) Expediting resource availability which can be used by any activity requiring that 

resource. 
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(e) An objective to minimize project / program costs, including mode costs, project / 

program completion costs, and expediting resource costs. 

(f) Multiple projects exhibiting characteristics (a) – (e) at both the project level and 

program level. 

2. It presents a problem generator capable of constructing instances of the MRCMPSP-

GPR/EXP. 

(a) The generator produces problem instances with all of the characteristics of the 

MRCMPSP-GPR/EXP. 

(b) The generator constructs project networks in a way which directly exploits a measure 

of network complexity which reflects the nature of networks more accurately than the 

measures more commonly used. 

3. It develops a specialized algorithm for solving single-project instances of the MRCMPSP-

GPR/EXP. 

(a) The algorithm is based on an approach for resource-constrained project scheduling 

from the literature, extended for multiple modes, generalized precedence with minimal 

and maximal time lags, expediting resource availability, a nd a cost-minimizing 

objective function. 

(b) The algorithm is designed to generate a set of k-best solutions to the problem rather 

than a single optimal solution. 

4. It uses the Sweeney-Murphy Decomposition principle to decompose multi-project 

instances of the MRCMPSP-GPR/EXP for more efficient scheduling. 

(a) Alternate methods for finding multipliers used to relax the coupling constraints in the 

original problem are developed. 

(b) Once the original problem is decomposed into subproblems, the specialized algorithm 

developed for single-project instances of the MRCMPSP-GPR/EXP is used to solve 

the subproblems. 

(c) An algorithm for solving the master problem is developed. 

(d) Techniques for both speeding solution of the master problem and for accelerating the 

iterative solution process are developed. 

(e) An error in the approach as originally presented by Sweeney and Murphy (1979) is 

explained and the impact of that error is described. 
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5. The problem generator designed in Objective 2 is used to generate test instances which are 

solved to test the methodologies developed in Objectives 3 and 4. 

Approach 

The project scheduling literature has been reviewed to identify project scheduling problems, 

and their mathematical formulations, which have characteristics in common with the MRCMPSP-

GPR/EXP.  A number of such problems have been found.  Where possible, formulations of 

relevant objective functions and constraints have been borrowed from the literature and modified, 

as necessary, to reflect characteristics unique to the MRCMPSP-GPR/EXP (e.g., extending 

constraints for multiple projects and expediting resources).  A complete mathematical formulation 

of the MRCMPSP-GPR/EXP is presented in Chapter III. 

Chapter III also introduces a decomposition of the problem, using classical Lagrangian 

relaxation.  Specifically, the multi-project nature of the MRCMPSP-GPR/EXP demonstrates a 

block-angular structure which can be exploited to decompose the problem into a number of semi-

independent subproblems and a master problem.  The subproblems represent the component 

projects, each with its own set of precedence and resource constraints.  The master problem 

enforces the program-level precedence and resource constraints.  Sweeney and Murphy (1979) 

present an approach for solving the decomposed problem by, first, generating a set of k-best 

solutions to each subproblem.  The subproblem solutions are then combined to form a master 

problem (a restriction of the original problem) which is solved to find a combination of subproblem 

solutions (one solution from each subproblem) which is feasible to the program-level constraints 

and which is optimal among all such combinations.  Sweeney and Murphy provide a condition 

under which the optimal solution to the master problem is also optimal to the original problem. 

The subproblems are solved using a specialized algorithm developed in Chapter V.  The 

algorithm is an implicit enumeration scheme based on the algorithm by Talbot (1982).  The 

algorithm has been extended to incorporate the characteristics of the MRCMPSP-GPR/EXP.  The 

algorithm has also been modified to generate a set of k-best solutions, rather than a single optimal.  

The resulting algorithm is further extended with a set of bounding and feasibility rules designed to 

speed the solution process.  Though designed specifically to solve the subproblems of a 

decomposed multi-project problem, the specialized algorithm of Chapter V is equally applicable as 

a stand-alone scheduler for single-project instances.  Extensive testing of the algorithm is reported, 
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including a comparison of results to those obtained by solving the test problems using a standard 

commercial IP solver. 

Chapter VI presents a procedure for relaxing / decomposing a multi-project problem and then 

for iteratively solving the subproblems and the master problem.  The basic procedure is based on 

the approach proposed by Sweeney and Murphy (1979).  Sweeney and Murphy, however, do not 

prescribe a methodology for solving either the subproblems or the master problem.  In their paper, 

they use a standard IP approach for solving both the subproblems and the master problem.  The 

procedure proposed in Chapter VI uses the algorithm developed in Chapter V for solving the 

subproblems.  Chapter VI, then, develops an implicit enumeration algorithm for solving the master 

problem. 

Chapter VI also proposes alternative approaches for generating the multipliers used to relax 

the original problem.  These approaches are based on (1) an approach by Nauss (1979) for 

estimating the marginal benefit of resources in an IP and (2) the concept of Average Utilization 

Factor described by Kurtulus and Davis (1982) and Kurtulus and Narula (1985).  Finally, Chapter 

VI provides additional schemes for accelerating solution of the master problem.  Testing of the 

decomposition approach, using alternative multipliers and acceleration schemes, is reported.  

Results are compared to solving the problems in whole (using the algorithm of Chapter V) versus 

through decomposition. 

Summary 

This chapter introduced the subject scheduling problem, provided an overview of the research 

issues and objectives, and summarized the research approach.  Chapter II presents a review of the 

pertinent literature on project scheduling and problem decomposition.  Chapter III provides a 

mathematical formulation of the scheduling problem and shows how the problem may be 

decomposed.  Chapter IV details a generator for constructing test problems, including an algorithm 

for generating network structures using an improved measure of network complexity.  Chapters V 

and VI, respectively, develop algorithms for solving single-project and multi-project instances of 

the problem.  Finally, a summary of the research, its contributions, and suggestions for future 

research are outlined in Chapter VII. 
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II.  Literature Review 

Introduction 

The literature is replete with models representing a wide variety of project scheduling 

problems.  This chapter reviews the models which provide a foundation for the Multi-Modal, 

Resource-Constrained, Multi-Project Scheduling Problem with Generalized Precedence and 

Expediting Resources (MRCMPSP-GPR/EXP).  The chapter also describes the myriad of 

approaches developed to solve project scheduling problems, including the use of problem 

decomposition methods.  The approaches are further evaluated in Chapters V and VI for their 

applicability to the MRCMPSP-GPR/EXP.  

Mathematical formulations are provided for the more important problems discussed in this 

chapter.  Note that the equations used in each of the model formulations are sequentially numbered.  

Once an equation has been numbered, any reuse of the equation will bear the original number.  

This consistency in numbering will provide insight into how one model builds upon another.  Note 

also that the abbreviations used to denote the different scheduling problems are summarized in 

Appendix A for easy reference.  However, the notation used in the problem formulations may not, 

in all cases, be consistent with the notation included in Appendix A.  The formulations below retain 

the variable definitions given by the original authors and may, therefore, change from one 

formulation to another.  Consequently, each variable used in a formulation is defined for that 

formulation only.  In those cases that a variable in this chapter is inconsistent with the variables 

listed in Appendix A, the inconsistent variable is not used in subsequent chapters. 

Problem Hierarchy 

The next section provides a review of project scheduling problems from the literature, most of 

which are special cases of the MRCMPSP-GPR/EXP.  To set the stage for this review, Figure 2-1 

diagrams the hierarchical relationship of the more important problems and the MRCMPSP-

GPR/EXP.  Each problem is numbered so it can be easily referred to in the subsequent sections.  

Note that Problem 1, at the bottom of the diagram, is the resource-unconstrained Project 

Scheduling Problem.  At the top of the diagram, Problem 12, is the MRCMPSP-GPR/EXP.  

Intermediate problems are constructed by adding characteristics to problems at a lower level or by 

relaxing characteristics of problems at a higher level. 
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Figure 2-1. Problem Hierarchy 

Table 2-1 is also provided as a tabular summary of the most important characteristics of the 

problems included in Figure 2-1. 
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Table 2-1. Key Features of Project Scheduling Problems 
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Standard Precedence x x x x x x x x x x x x 
Generalized Prec (Min Lags)   x    x  x x  x 
Generalized Prec (Max Lags)         x   x 
             
Multiple Modes    x   x x x x x x 
             
Expediting Resources      x     x x 
             
Multi-Project Problems          x  x 
  w/Program Nonrenew Res          x  x 
  w/Program Renew Res            x 
  w/Time-Related Projects            x 
             
Regular Measure of Perf x x x x x x x x x x x x 
Non-Regular Measure of Perf      x     x x 

 

Single-Project Scheduling 

This section reviews single-project scheduling problems and the approaches used to solve 

them.  The section begins with the resource-unconstrained Project Scheduling Problem as the basis 

for the subsequent problems.  Resource constraints, activity crashing, expediting resources, and 

generalized precedence are then discussed and related problems are introduced. 

The Project Scheduling Problem.  The Project Scheduling Problem (PSP), Problem 1 in Figure 

2-1, dates to the late 1950s (see Kelley, 1961) when the Critical Path Method (CPM) was 

developed (Icmeli, 1993).  The PSP is the problem of scheduling a set of activities in a project to 

minimize the makespan of the project.  Activities have fixed and known durations.  Any given pair 

of activities (graphically represented by nodes in the project network) may be related by simple 
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finish-start precedence relationships (represented by network arcs) where one activity must finish 

before another may start.  The mathematical formulation of the problem is given by: 

 Minimize Js  (1) 

 subject to iij dss ?? , jOi ??  (2) 

  integer and 0?js , j?  (3) 

where 

 sj = start time of activity j 

 dj = duration of activity j 

 J = terminal node or activity 

 Oj = set of predecessors of activity j 

 

The PSP may be solved using the CPM.  The CPM allows the activities of a project to be 

scheduled in a way which maintains the precedence relationships between the activities and which 

minimizes the duration of the project.  This is done by starting each activity as soon as all of its 

predecessors are complete (see Shtub et al., 1994: 338-341).  These start times are specifically 

referred to as the early start times of the activities.  The completion time of the last activity 

completed is the minimum completion time of the project. 

A backwards recursion may also be made on the network where all activities are scheduled to 

start as late as possible while still completing the project at its minimum completion time and 

maintaining the precedence relationships.  These are the late start times of the activities.  Those 

activities whose early and late start times are identical are called critical activities.  Each network 

path consisting only of critical activities is called a critical path (from which the name Critical 

Path Method comes).  Kelley (1961) provides the mathematical basis for the CPM. 

While the applicability of the CPM is limited because it deals only with the time aspect of the 

project without consideration for resource restrictions (see Icmeli, 1993), it remains a useful tool.  

It is used in many enumeration schemes to provide activity start time bounds which reduce the 

solution space which needs to be enumerated. 

Resource Constraints.  A significant limitation of the PSP is that resources are assumed to be 

available at ample enough levels such that they do not constrain the schedule.  In reality, project 

resources are often limited to the point where the start times of some activities have to be delayed 
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because insufficient resources are available.  The consideration of limited resources has given rise 

to a myriad of resource-constrained problems, the most basic of which is the Resource-Constrained 

Project Scheduling Problem (RCPSP), Problem 2 in Figure 2-1. 

The RCPSP has the same finish-start precedence structure and makespan minimization 

objective function as the PSP.  However, each activity now requires a certain amount of some 

limited resources.  The demand for a resource by an activity is assumed constant for the duration 

of the activity and resource availability per period is constant.  Generally, there are insufficient 

resources in one or more periods to schedule all of the critical path activities at their earliest start 

time.  (Consequently, the CPM alone is insufficient for developing a feasible schedule.) 

One of the earliest formulations of the RCPSP was proposed by Bowman (1959) for job shop 

scheduling.  In Bowman’s formulation, shown below, 0-1 variables describe whether or not an 

activity is in progress in any given time period.  Constraints (5) assure that each activity is in 

progress during the same number of time periods as the activity has units of duration.  Constraints 

(6) prohibit activity preemption (i.e., an activity being interrupted once started).  Constraints (7) 

enforce precedence relationships by assuring that, if activity i precedes activity j, activity j can be 

in process at time t* only if the number of periods that activity i is in process before time t* is 

greater than or equal to the duration of activity i.  Resource use is limited by Constraints (8).  

Finally, the objective function is to minimize the project duration. 

 Minimize ? ?
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where 
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 jtx  = 1 if activity j is in process at time t ; 0, otherwise 

 J = terminal node or activity 

 dj = duration of activity j 

 ej = early start time of activity j 

 lj = late start time of activity j 

 t0 = early project completion time 

 t1 = late project completion time 

 rjq = requirement for resource q by activity j 

 Rqt = availability of resource q in time t 

 Oj = set of predecessors of activity j 

 

Since, in Bowman’s formulation, an activity requires a variable for each time period from the 

activity’s earliest possible start time to its latest possible finish time, this formulation generally 

requires many more 0-1 variables than later formulations (described next).  Bowman gives an 

illustrative job shop example with three products and four machines.  He shows that even this 

small problem would require 300 to 600 variables, depending on the number of time frames 

chosen, and even more constraints (Bowman, 1959: 624).  The Bowman formulation, however, has 

still found utility in later research efforts (e.g., Deckro and Hebert, 1989). 

Pritsker et al. (1969) developed a 0-1 formulation of the RCPSP which provides considerable 

economy over the Bowman formulation.  Their formulation, the Pritsker-Watters-Wolfe (PWW) 

model, is based on 0-1 variables which indicate the time periods in which an activity may be 

completed.  Since the set of possible completion times of an activity can be a small subset of all of 

the times an activity may be in progress, typically far fewer variables are required. 

In the PWW model, shown below, Constraints (11) assure that each activity completes only 

once.  Precedence relationships are enforced by Constraints (12) while resource limits are enforced 

by Constraints (8).  The objective shown is to minimize the project makespan. 

 Minimize ?
?

T

t
Jttx

1

   (10) 

 subject to 1??
?

j

j

l

et
jtx , j?  (11) 



 2-7

  i

l

et
jt

l

et
it dtxtx

j

j

i

i

?? ??
??

, jOi j  , ??  (12) 

  qt

J

j
jtjq Rxr ??

?1

, tq  ,?  (8) 

  ? ?0,1?jtx , tj  ,?  (9) 

where 

 jtx  = 1 if activity j completes at time t ; 0, otherwise 

 J = terminal node or activity 

 dj = duration of activity j 

 ej = early start time of activity j 

 lj = late start time of activity j 

 T = late project completion time 

 rjq = requirement for resource q by activity j 

 Rqt = availability of resource q in time t 

 Oj = set of predecessors of activity j 

 

In an example, Pritsker et al. present a three-project, eight-activity (total), three-resource 

problem.  Their formulation requires 33 variables and 37 constraints (Pritsker et al., 1969: 107).  

This is an improvement over the 72 variables and 125 constraints (50 variables and 94 constraints 

with careful size reduction) required by the Bowman formulation of the problem (Pritsker et al., 

1969: 107).  The PWW model has been used extensively by other authors and is the model upon 

which the mathematical formulation in Chapter III for the MRCMPSP-GPR/EXP is based.  

Blazewicz et al. (1983) show that the RCPSP is a generalization of the job shop scheduling 

problem and, as such, belongs to the NP-complete complexity class.  Consequently, the breadth of 

approaches reported for solving the RCPSP has met with mixed success.  The remainder of this 

subsection discusses the breadth of solution approaches for the RCPSP. 

Mathematical Programming.  Pritsker et al. solve their example problem using a general 

integer programming (IP) code developed by Geoffrion (Pritsker et al., 1969: 106).  Other authors 

have also used general IP approaches to solve the RCPSP (e.g., Bowman, 1959; Patterson and 

Huber, 1974; Patterson and Roth, 1976; Deckro and Hebert, 1989; Icmeli and Rom, 1996).  One 



 2-8

of the characteristics of the RCPSP which has been exploited by some authors to improve the 

efficiency of general IP approaches to the RCPSP is the existence of special ordered sets (SOS) of 

variables. 

Beale and Tomlin (1969) introduced the concept of SOS variables.  A special ordered set of 

variables of type 1 (SOS1) is a set of variables (continuous or integer) within which exactly one 

variable must be non-zero.  A special ordered set of variables of type 2 (SOS2) is a set of variables 

within which at most two can be non-zero.  In the case of SOS2 variables, the two non-zero 

variables must be adjacent in the ordering given to the set (Williams, 1985: 173).  Constraints (11) 

are SOS1 variables since only one xjt will be non-zero for each activity j. 

The restriction that a set of variables belongs to SOS1 or SOS2 is easily modeled using binary 

variables and constraints, as in Constraints (11).  The great computational advantage to be gained, 

however, comes from treating these sets algorithmically (Williams, 1985: 173).  Bean (1984) 

points out that a general n-variable binary problem has an enumeration tree with 2n branches.  If 

the variables are separated into m SOS1 sets, where the ith set contains ni variables and 

n ni
i

m

?
?
?

1
, then only ni

i

m

?
?

1
 of the 2n branches mentioned above are feasible in the multiple choice 

constraints defined by this partitioning.  Bean presents a branch-and-bound algorithm which 

exploits SOS1 variables. The algorithm is successfully a pplied to a number of problems with up to 

400 binary variables.  Tripathy (1984) uses a branch -and-bound algorithm with SOS1 variables as 

part of a solution methodology for the school timetabling problem.  He solves a problem with 3384 

variables.   

Despite the general usefulness of SOS variables, Patterson (1984) reports that in his 

comparison of exact approaches for solving the RCPSP, one approach that was considered for the 

comparison was solving the problem using a general purpose 0-1 program solver using Tomlin’s 

integrated SOS procedure.  The approach was eliminated because it could solve only the smallest 

of problem instances in the time imposed.  Demeulemeester and Herroelen (1992: 1803) also report 

that, while the RCPSP is typically formulated as a straightforward integer program, standard IP 

approaches have generally proven unsuccessful.  Researchers have thus turned to specialized 

algorithms for finding exact, or optimal, solutions (Demeulemeester and Herroelen, 1992: 1803). 

Graph-Based Approaches.  Balas (1970) represents the RCPSP as a disjunctive graph 

with the goal of eliminating the need to consider individual time periods over the project horizon.  
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Solutions are obtained by finding a minimum-arc disjunctive graph subject to stability conditions.  

Stability is represented by a generalized coefficient of internal stability – a check for feasibility 

with respect to available resources.  Gorenstein (1972) shows how the generalized coefficient of 

internal stability can be calculated using a maximum -flow computation on a bipartite graph.  While 

the network representation of the problem eliminates the dependence of the number of variables on 

the time horizon, Christofides et al. (1987) suggest that the procedure proposed for guaranteeing 

the feasibility of the solution requires a large computational effort that limits the use of the 

algorithm.  

Davis and Heidorn (1971) present an algorithm where activities are broken into unit-length 

tasks.  An A-network is formed where nodes represent subsets of tasks and arcs connect subsets 

which could be completed on adjacent days.  The minimization of the project duration, then, is a 

matter of finding a path from start to finish in the A-network which contains a minimal number of 

arcs.  The advantage of this procedure is that the subdivision of activities into tasks of unit length 

easily allows for job splitting (without any additional computational effort) and activity resource 

requirements can vary over the duration of the activity.  The drawback to the procedure is that the 

number of subsets grows rapidly with problem size and only very small problems can be handled 

(Davis and Heidorn, 1971: B-815; Christofides et al., 1987: 263).  Davis and Heidorn test their 

algorithm on 65 problems, each containing 50 to 95 unit-duration tasks (30 original activities) and 

involving 3 resource types.  Optimal solutions were found for 48 of these problems (Davis and 

Heidorn, 1971: B-815). 

Implicit Enumeration.  Most implicit enumeration methods use partial schedules which are 

associated with the nodes of an enumeration tree.  Branching from nodes equates to extending 

partial schedules.  Dominance rules and lower bounds serve to reduce the number of alternatives 

for extending partial schedules.  Methods differ in the way they branch and prune. 

Talbot and Patterson (1978), rather than using a 0-1 formulation of the problem, represent the 

problem in structured, compact integer arrays which are directly employed by the solution 

procedure.  This representation results in considerable memory savings.  The solution procedure 

uses implicit enumeration of all feasible schedules, relying on network cuts to fathom partial 

schedules which cannot lead to an improved solution.  Talbot and Patterson conduct a comparative 

study of their algorithm using 50 test problems.  They show their algorithm to be more efficient 

than other enumeration procedures and competitive with the best available branch-and-bound 
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procedure, while requiring considerably less computer storage.  They claim, however, that the 

likelihood of obtaining an optimal solution for projects containing more than 50 activities within a 

reasonable amount of computation time is low.  In fact, they encountered a few projects containing 

as few as 35 activities that could not be solved in a reasonable amount of time with their approach 

in 1978 (Talbot and Patterson, 1978: 1172). 

Stinson et al. (1978) present a branch-and-bound procedure where nodes in the solution tree 

correspond to precedence and resource feasible assignments for a subset of the activities of the 

project.  In a comparison of exact approaches for solving the RCPSP, Patterson (1984) determines 

Stinson’s Procedure to be the fastest of the procedures tested at that time.  Patterson’s 110 test 

problems include up to 50 activities and 3 resource types. 

Christofides et al. (1987) and Demeulemeester and Herroelen (1992) use the concept of delay 

alternatives.  Christofides et al. (1987) present a delay alternative branch-and-bound algorithm 

based on the idea of using disjunctive arcs for resolving conflicts that are created whenever sets of 

activities have to be scheduled whose total resource requirements exceed the resource availabilities 

in some periods.  For fathoming branches, the authors examine four lower bounds and 

computational results appear promising.  Demeulemeester et al. (1994), however, present a 

counterexample to show that the procedure proposed by Christofides et al. does not guarantee an 

optimal solution.  Demeulemeester et al. suggest a modification to this procedure which does 

guarantee optimality.  Their modification expands the set of source nodes considered for delay arcs 

to ensure that partial schedules which may lead to an optimal schedule are not fathomed 

prematurely.  Demeulemeester et al. test their modified approach using Patterson’s 110 test 

problems and find that their approach optimally solves all of these test problems. 

Demeulemeester and Herroelen (1992) present another delay alternative branch-and-bounding 

procedure where the nodes represent partial schedules in which finish times have been temporarily 

assigned to a subset of activities of the project.  Activities are scheduled as soon as precedence and 

resource constraints allow, but they may be delayed based on decisions made in later stages of the 

search process.  The algorithm shows promising results, being an average of almost 12 times faster 

than the best-first procedure by Stinson et al. previously reported by Patterson (1984) to be the 

most effective and efficient on the problem set considered.  The algorithm is tested on projects with 

at most 51 activities and 3 resources.  
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Other Approaches.  Patterson and Huber (1974) present a minimum bounding algorithm 

and a maximum bounding algorithm to solve the 0-1 formulation of the problem.  The minimum 

bounding algorithm begins by fixing the project horizon at the CPM shortest possible project 

duration and then solving the 0-1 problem to determine feasibility.  If feasible, the schedule based 

on the CPM duration is optimal.  If infeasible, the project horizon is extended by one time unit and 

the 0-1 problem solved again to determine feasibility.  The algorithm continues until a feasible (and 

consequently, optimal) schedule is found.  The maximum bounding algorithm is similar except that 

a feasible schedule is first  determined using an appropriate heuristic.  The project horizon is then 

set at one time unit less than the project duration found with the heuristic and the 0-1 problem 

solved for feasibility.  If infeasible, the duration from the heuristic solution is optimal.  If feasible, 

the time horizon is again shortened and the process continued until there are no feasible schedules 

for a given project horizon.  An optimal schedule is the last feasible schedule.  Patterson and Huber 

demonstrate this approach to be more effective than 0-1 programming without bounding.  On a set 

of 11 test problems, they show that less time was involved in examining a series of 0-1 problems 

for feasibility than was involved in solving one 0-1 problem optimally (Patterson and Huber, 1974: 

997). 

Zamani (under review) presents an algorithm which finds an optimal solution or a heuristic 

solution within a certain range of the optimal solution.  His algorithm uses heuristic estimates 

which are continuously updated during the search process.  At each level of the search tree, the 

heuristic estimates of partial solutions are updated by comparing them with those of their 

neighbors.  The initial heuristic value of every partial schedule is a lower-bound on the completion 

of the project.  Zamani reports that solution times compare favorably to other optimal algorithms, 

and the algorithm provides guaranteed performance bounds unlike other heuristics. 

One variant of the RCPSP is the Resource Availability Cost Problem (RACP), proposed by 

Demeulemeester (1995).  The RACP is the problem of minimizing renewable resource availability 

costs subject to a project due date.  (Renewable resources are those which are limited on a per 

period basis.)  More precisely, the per period availability of a resource is to be the same for all 

periods, but the objective of the problem is to determine what this resource level should be in order 

to complete the project by a fixed due date at minimal cost for resources.  Demeulemeester uses a 

minimum bounding strategy to solve this problem.  The strategy starts with minimal resource 

availabilities and solves a resource-constrained project scheduling decision problem to determine if 
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a feasible schedule exists at the current levels of resource.  If so, the schedule is optimal.  If not, 

resource availabilities are incrementally increased and the decision problem solved until a feasible, 

and optimal, schedule is found.  The technique was successfully applied to a modification of 

Patterson’s 110 test problems. 

Activity Crashing.  Activity crashing is the process of shortening the duration of an activity.  

The following discussion outlines a number of scheduling problems which differ in the way they 

crash an activity’s duration. 
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Minimal Cost Project Network Problem.  Wu and Li (1994) and Kamburowski (1995) 

discuss the Minimal Cost Project Network Problem (MCPNP).  The concept of the problem is to 

crash a project network, without resource constraints, to minimize project costs.  The direct costs 

of crashing activities are offset by indirect costs based on the duration of the project.  Wu and Li 

(1994) outline a method for solving the problem using a minimum cut set algorithm.  The key steps 

of the algorithm identify normal project durations, minimum cut sets, and the capacities of those 

cut sets.  Kamburowski (1995), however, shows that the method of Wu and Li does not guarantee 

an optimal solution.  He outlines his own optimal method which is also based on a minimum cut set 

and demonstrates the approach on an example with four activities. 

Project Time/Cost Tradeoff Problem.  The Project Time/Cost Tradeoff Problem (PTCTP) 

allows a project to be shortened by crashing the duration of one or more if its activities.  That is, 

each activity has a normal duration and a crashed duration and, at a cost, the duration of an 

activity can be reduced from its normal duration to as short as its minimum crashed duration.  The 

objective is to determine the start time and duration of each activity in order to complete the project 

by a fixed due date while minimizing the cost of crashing.  The methods demonstrated for solving 

the problem include a minimum cut set algorithm (Phillips and Dessouky, 1977), a labeling 

algorithm (Elmaghraby, 1977: 58-118; Ford and Fulkerson, 1962: 151-162), a CPM time-cost 

tradeoff procedure (Moder et al., 1983: 237-251), and a Benders’ Decomposition (Kuyumcu and 

Garcia-Diaz, 1994).  While the crashing cost function is generally linear, Elmaghraby (1977) 

extends the model to include strictly convex cost functions, concave cost-duration functions, and 

discrete non-increasing functions. 

Activity Duration Crashing Problem.  The Activity Duration Crashing Problem, proposed 

by Deckro and Hebert (1989), is a discrete extension of the Project Time/Cost Tradeoff Problem, 

incorporating resource restrictions as well. The standard objective is to determine the start time and 

duration of each activity which minimizes the project duration subject to a budget for crashing and 

subject to resource availabilities.  Deckro and Hebert base their model on Bowman’s (1959) 0-1 

formulation of the Resource-Constrained Project Scheduling Problem.  They provide a five-

activity, one-resource example which was solved using a commercial integer program solver (using 

branch-and-bound). 
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Multi-Modal, Resource-Constrained Project Scheduling Problem.  The previous two 

problems seek to shorten the duration of activities from a normal duration to a crashed duration, 

typically at a per-period cost for crashing.  The Multi-Modal, Resource-Constrained Project 

Scheduling Problem (MRCPSP), Problem 4 in Figure 2-1, is similar in that it allows tradeoffs 

between activity duration and cost.  However, the cost incurred for changing the duration of an 

activity is not necessarily a monetary fee charge for each period the activity duration is shortened.  

Instead, the cost for changing the duration of an activity is incurring a different mix of required 

resources.  More precisely, each activity can be performed in one of multiple execution modes.  

The mode of execution determines the activity’s duration and resource requirements.  For example, 

the U.S. Air Force’s Air Mobility Command (AMC) may have the task of airlifting troops and 

supplies from the U.S. to a forward operating base (FOB) overseas.  This task may have several 

possible execution modes.  One mode may involve airlifting the troops and supplies, via C-5 

aircraft, from the U.S. to a main operating base (MOB) overseas and then to the FOB using C-130 

aircraft.  An alternative mode may involve airlifting the troops and supplies directly from the U.S. 

to the FOB using C-17 aircraft.  Obviously, the time and resources required to accomplish the task 

depends on the execution mode chosen. 

The standard objective of the problem is to minimize the duration of the project, subject to 

resource constraints, by determining the start time and execution mode for each activity.  The 

problem belongs to the NP-Hard complexity class (Kolisch, 1995: 26). 

Following is the mathematical formulation of the MRCPSP.  The model is almost identical to 

that of the RCPSP, the main difference being an additional index, m, is added to the decision 

variable to indicate which mode is selected for an activity. 
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  ? ?0,1?jmtx , tmj  , ,?  (17) 

where 

 jmtx  = 1 if activity j is executed in mode m and completes at time t ; 0, otherwise 

 J = terminal node or activity 

 djm = duration of activity j when executed in mode m 

 ej = early start time of activity j 

 lj = late start time of activity j 

 T = late project completion time 

 rjmq = requirement for resource q by activity j executed in mode m 

 Rqt = availability of resource q in time t 

 Oj = set of predecessors of activity j 

 

To solve the MRCPSP, Talbot (1982) presents a two-stage solution methodology which builds 

upon ideas presented earlier for the RCPSP (see Talbot and Patterson, 1978).  In the first stage, the 

network is relabeled using a heuristic scheduling rule.  This labeling process defines the order in 

which activities are considered for scheduling during the second stage of the procedure.  The 

precedence and resource constraints are also stored in memory as compact arrays that are 

interrogated during enumeration to ensure solution feasibility.  Stage 2 is an implicit enumeration 

algorithm which builds always-feasible partial schedules into complete schedules by considering 

jobs for assignment in increasing numerical order.  When a complete schedule is built, if the 

schedule is an improved solution, bounds are tightened and the assignment procedure begins again 

with job 1.  Ultimately, optimality is verified either by enumerating (explicitly or implicitly) all 

possible schedules or by achieving some theoretical bound such as the critical path.  Talbot 

demonstrates the procedure on problems of up to 30 activities.  Not all problems were solved in the 

16-second time limit permitted (Talbot, 1982: 1209). 

Patterson et al. (1989, 1990) refined Talbot’s solution approach by introducing a precedence 

tree which allows a systematic enumeration of mode assignments and start times.  At each level of 

the tree, the activities which are eligible for scheduling (vis-à-vis the precedence and resource 

constraints) are considered for addition to the partial schedule.  In the case of minimizing the 

project makespan, activities are scheduled at their earliest precedence and resource feasible time.  

Patterson et al. also discuss the application of the precedence tree to the Resource-Constrained Net 
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Present Value Problem (RCNPVP) which is the RCPSP where the minimization of cash flows is 

the objective (see Icmeli and Erenguc, 1996; and Doersch and Patterson, 1977).  Negative activity 

cash flows in the objective function of the RCNPVP would drive the start time of those activities to 

their late start time.  Because of the increased computational times required to enumerate over all 

possible start times of these activities, Patterson et al. suggest use of their algorithm as a heuristic, 

where they allocate some fixed percent of the solution time to right-shifting the activities with 

negative cash flows.  

Sprecher (1994) improves the procedure by Patterson et al. for the RCPSP by introducing the 

notion of an i-partial schedule which uniquely describes a node i of the enumeration tree and the 

associated partial schedule.  Sprecher also applies four dominance criteria and one feasibility 

bounding rule.  Sprecher performed a computational evaluation of his procedure on a set of test 

problems and found that his procedure revealed an acceleration factor of approximately one 

hundred in comparison to the original algorithm of Patterson et al. (1990). 

Kolisch and Frase (1996) produce an additional acceleration of the procedure by Sprecher 

(1994) by adding three bounding rules (to shorten the time windows of feasible activity start 

times), two lower bounding rules, and one feasibility rule.  They compare the modified procedure 

with the basic enumeration scheme using 250 benchmark problems and find improvement on the 

order of 1000 times.  Sprecher and Drexl (1996a, 1996b) provide further refinements to the 

procedure.  They present a branch-and-bound algorithm with special bounding rules which has 

substantially improved the computational tractability of the MRCPSP and which has nearly 

doubled the size of projects that can be solved to optimality (Sprecher and Drexl, 1996b: 24).  

Even so, in a test of 10 randomly generated problems, one problem with 16 activities, 5 modes per 

activity, and 4 resource types required 3 hours 56 minutes to solve.  Of greater concern, Sprecher 

and Drexl report that the computation time seems to increase exponentially with the number of 

activities and the number of modes per activity (Sprecher and Drexl, 1996b: 18). 

Finally, Sprecher and Drexl (1998) improve the precedence tree approach further by 

introducing search tree reduction schemes which exclude partial schedules from further 

continuation.  Search tree reduction is provided by a number of bounding rules, which, they report, 

nearly doubles the tractability of the problem (i.e., the size of problems that can be solved) 

(Sprecher and Drexl, 1998: 448). 
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Sprecher et al. (1997) present another approach which builds upon the delay alternative 

concept of Christofides et al. (1987) and Demeulemeester and Herroelen (1992) for the single-

mode case.  Using the notion of mode alternatives, each level of the branch-and-bound tree is 

associated with a fixed time (decision point) at which activities can be started.  Decision points 

occur when all activities currently in process finish.  The set of eligible activities is based on the set 

of activities that are finished at or before the decision point.  All eligible activities are temporarily 

scheduled at the decision point.  An eligible activity (now scheduled to start at the decision point) 

was either previously assigned a mode or has not been assigned a mode.  The eligible activities not 

previously assigned a mode are assigned a mode and that set of activities, with their newly assigned 

modes, form a mode alternative.  Scheduling all eligible activities to start at the decision point may 

have caused some resource conflicts.  Thus, the set of minimal delay alternatives is computed, 

where a delay alternative is a subset of the activities started at the decision point whose 

postponement makes the remaining scheduled activities renewable-resource feasible.  A minimal 

delay alternative is one where no proper subset of the delay alternative is itself a delay alternative.  

A minimal delay alternative is selected and those activities making up the alternative are removed 

from the partial schedule at the decision point.  A new decision point is calculated and the process 

continues until a complete schedule is found.  The algorithm, then, backtracks to previously untried 

delay alternatives and, if there are no more delay alternatives, to untried mode alternatives. 

Hartmann and Drexl (1998) present an approach based on the approach used by Stinson et al. 

(1978) for the single-mode case and almost identical to the mode and delay alternative approach of 

Sprecher et al. (1997).  The difference between the single- and multi-mode approaches lies in the 

way partial schedules are expanded.  The mode and extension alternative approach defines 

decision points and mode alternatives in the same way that the mode and delay alternative 

approach does.  However, rather than attempting to start all eligible activities at a design point and 

then delaying some subset of these activities to achieve resource feasibility, the mode and extension 

alternative approach identifies subsets of resource feasible activities and begins one of these 

subsets at the decision point.  Backtracking tests all untried extension alternatives before testing 

untried mode alternatives. 

Resource-Constrained Project Scheduling Problem with Multiple Crashable Modes.  

Ahn and Erenguc (1998) combine the MRCPSP and the Time/Cost Tradeoff Problem to form a 

new problem, the Resource-Constrained Project Scheduling Problem with Multiple Crashable 
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Modes (RCPSPMCM).  In the RCPSPMCM, the duration of each activity is not only a function of 

resource requirements (mode selection) but also of the amount of crashing (duration reduction by 

increasing direct costs).  For example, mode selection for an activity might be a matter of choosing 

a skilled worker (charging a fixed hourly rate) or an unskilled worker (charging a different hourly 

rate).  The skilled worker would likely require less time to accomplish the activity.  Duration 

crashing, on the other hand, might be accomplished by paying either worker overtime, thereby 

shortening the duration of the activity (whichever mode was selected) without changing the mode.  

Because of the combinatorial nature of the problem and the success of heuristics, Ahn and Erenguc 

propose a heuristic approach for this problem. 

Mode-Identity, Resource-Constrained Project Scheduling Problem.  Salewski et al. 

(1996a, 1996b, 1997) introduce the RCPSP with Mode Identity (MIRCPSP).  In many situations, 

such as audit-staff scheduling, time-tabling, and course scheduling, the resources correspond to 

individuals.  This leads to an assignment-type of problem where each activity must be performed 

by one or more of several individuals.  Mode identity refers to the generalization of the RCPSP 

where the set of all activities must be subdivided into subsets where all activities forming a subset 

must be performed in the same mode.  The RCPSP, then, might be viewed as a mode identity 

problem where each activity is its own subset. 

Expediting Resources.  The concept of expediting resources was introduced by Deckro and 

Hebert (1989) in their Resource Critical Project Crashing Problem (RCPCP) (Problem 6 in Figure 

2-1).  The RCPCP is identical to the RCPSP except that it allows a project to be crashed by 

increasing critical resources in one or more periods.  The objective is to determine the start time of 

the activities and the critical resources to increase in order to meet the project due date at minimal 

cost for additional resources.  The problem can be extended to allow for penalty and bonus 

payments based on a target due date. 

Deckro and Hebert base their model (shown below) on the PWW formulation of the 

RCPSP.  The constraints limiting resources, RCPSP Constraints (8), are modified to 

incorporate a new integer variable, qth , representing the units of expediting resources q used in 

time period t.  The new resource constraints are Constraints (19).  New constraints are added 

to limit the availability of expediting resources, Constraints (20).  The objective function 
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minimizes the cost of the expediting resources, qc .  Objective (18) also includes a bonus, tb , 

for early completion of the project (by time G) and a penalty, tp , for late completion of the 

project (after time G). 
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where 

 jtx  = 1 if activity j completes at time t ; 0, otherwise 

 qth  = units of resource q used at time t  

 J = terminal node or activity 

 dj = duration of activity j 

 ej = early start time of activity j 

 lj = late start time of activity j 

 bj = bonus for early completion of project (at time t)  

 cq = cost of a unit of resource q 

 pj = penalty for late completion of project (at time t) 

 G = desired project completion time 

 T = late project completion time 

 rjq = requirement for resource q by activity j 

 Rqt = availability of resource q in time t 
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 qtH = expediting availability of resource q in time t 

 Oj = set of predecessors of activity j 

 

Deckro and Hebert provide an example of the RCPCP solved using a commercial integer 

program solver. 

Kolisch and Frase (1996) extend the concept of expediting resources to include not only 

renewable resources, but also nonrenewable resources.  The problem they introduce, the Multi-

Modal, Resource-Constrained Project Scheduling Problem with Expediting Resources 

(MRCPSP-EXP), also considers multiple activity execution modes (Problem 11 in Figure 2-1).  

They solve the problem using a modification to the implicit enumeration scheme by Sprecher 

(1994). 

Generalized Precedence.  Generalized precedence constraints extend the types of temporal 

relationships between activities beyond the standard finish-start precedence.  Generalized 

precedence can be used to model finish-start, finish-finish, start-start, and start-finish precedence 

types.  De Reyck and Herroelen (1998a, 1999) show that all four types of precedence can, in fact, 

be represented by the start-start precedence type with minimal time lags.  The resulting problem is 

the Generalized Resource-Constrained Project Scheduling Problem (GRCPSP) (Problem 3 in 

Figure 2-1).  When the GRCPSP is extended for multiple activity execution modes, the resulting 

problem is the Generalized, Multi-Modal, Resource-Constrained Project Scheduling Problem 

(GMRCPSP) (Problem 7 in Figure 2-1).  The GMRCPSP has been addressed specifically by 

Demeulemeester and Herroelen (1997).  If maximal time lags are then included in the precedence 

relationships, the resulting problem is the Multi-Modal, Resource-Constrained Project Scheduling 

Problem with Generalized Precedence (MRCPSP-GPR) (Problem 9 in Figure 2-1). This problem 

has been addresses by Herroelen et al. (1998) and De Reyck and Herroelen (1998a, 1998b, 1999).  

In their survey of project scheduling, Kolisch and Padman (1998) point out that with the presence 

of minimal and maximal time lags, a problem becomes much more complicated and standard 

RCPSP algorithms generally fail to obtain solutions (Kolisch and Padman, 1998: 16).  Solution 

procedures that have been used are typically extensions of other procedures already discussed.  For 

example, De Reyck and Herroelen (1998a) extend a procedure used for the Discrete Time/Cost 

Problem, and De Reyck and Herroelen (1999) use the concept of delay alternatives. 



 2-21

Multi-Project Scheduling 

Pritsker et al. (1969) are perhaps the first to explicitly address problems with multiple 

projects.  They mention the applicability of their model to multiple projects and formulate an 

example with multiple projects, but they do not suggest any multi-project solution methodologies 

other than lumping the projects together as one larger project.  Since then, the following multi-

project problems have been addressed with solution methodologies designed to take advantage of 

the multi-project nature of the problem. 

Multi-Project Scheduling Problem.  The Multi-Project Program Scheduling Problem (MPSP) 

is presented by Wiley (1996) and Wiley et al. (1998).  The objective of the problem is to minimize 

the cost or duration of a multi-project program by crashing some of its activities.  Unlike the 

Activity Duration Crashing Problem, however, activity crashing is tied to specific limited 

resources.  That is, for every time period an activity is crashed, an amount of each resource is 

consumed.  Since these resources are limited, the amount of crashing possible is limited.  

Wiley’s formulation is broadly based on the formulation by Deckro et al. (1992) for 

scheduling work packages.  Deckro et al. solve the work package problem using a standard linear 

programming code.  They also note the decomposability of the problem using algorithms such as 

Benders’ partitioning or Dantzig-Wolfe decomposition.  Berczi  (1986) also models the scheduling 

of work packages but uses goal programming to allow for multiple objectives. 

Since Wiley’s multi-project model displays the familiar block-angular structure and since 

variables are assumed to be continuous, Wiley decomposes the problem using the Dantzig-Wolfe 

decomposition approach.  Dantzig and Wolfe (1960) developed their decomposition principle to 

exploit the block-angular structure of many large linear programs by decomposing the problem 

based on resources.   The decomposition is characterized by a subproblem for each distinct block 

and one master problem.  During the algorithm, the subproblems are iteratively solved, and during 

each iteration, a solution proposal is passed to the master problem.  The master problem records 

and keeps track of all of these proposals.  The master problem, then, seeks to identify a convex 

combination of all the proposals submitted by Subproblem 1, and a convex combination of all the 

proposals submitted by Subproblem 2, and so on, which, collectively, satisfy the coupling 

constraints and which is optimal to the original problem.  

Advantages to the decomposition approach are various.  By decomposing a large problem, it is 

often possible to solve linear programs of a size which would otherwise be unsolvable.  The ability 
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to solve large problems becomes even more attractive when the subproblems, themselves, have a 

structure which can be exploited.  Furthermore, the subproblems are independent and can be solved 

on separate processors, leading to parallelization. 

Another advantage to the decomposition approach is its economic interpretation (see Baumol 

and Fabian, 1964; Lasdon, 1970: 160-163; Deckro et al., 1998).  The decomposition can be 

viewed as a decentralized decision process.  In the context of a firm, the master problem represents 

the problem of the corporation which seeks to optimize the overall good of the firm.  The 

subproblems can be viewed as subdivisions of the firm whose focus is on their respective 

subdivision and not on the firm as a whole.  Each subdivision has a set of unique constraints to 

which it must adhere.  There is also a set of constraints which couple the subdivisions.  These may 

be constraints on resources for which all subdivisions compete.  The solution process begins with 

each subdivision submitting a proposal to the firm based on a unit profit figure provided by the 

firm.  Unfortunately, a proposal which is good for one subdivision may not be good for another 

subdivision or, more importantly, to the overall corporation.  The firm receives these proposals 

from the subdivisions and determines the impact each proposal has on the corporation and, 

ultimately, the other subdivisions.  The firm, then, revises its unit profit figures and hands those 

down to the subdivision.  The subdivisions submit new proposals based on the revised figures.  The 

process continues iteratively until an optimal set of decisions can be found.  While the economic 

interpretation of the decomposition method is frequently viewed in terms of the firm, it can likewise 

be extended to any organization or process which can be decentralized.  Clearly, balancing 

resources amongst the units of a joint command would be a similar process, with the overall 

commander acting as the corporation and the various units acting as subdivisions. 

The master problem and subproblems of the decomposed MPSP can be easily solved using 

commercial linear program solvers.  An example is provided by Wiley (1996) and Wiley et al. 

(1998) with 3 projects, a total of 39 activities, and 3 resource types (including a budget).  Because 

of the continuity of the variables, insightful sensitivity analysis is also made ava ilable. 

Resource-Constrained, Multi-Project Scheduling Problem.  The Resource-Constrained, Multi-

Project Scheduling Problem (RCMPSP) (Problem 5 in Figure 2-1), is presented by Deckro et al. 

(1991).  The RCMPSP is identical to the RCPSP except that it considers multiple projects.  While 

these multiple projects can be modeled as a single super-project and solved by the approaches 
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described for single-project problems, Deckro et al. (1991) propose a promising approach used to 

decompose the problem. 

Solution of the problem is aided by recognition of the block-angular structure of the problem 

where the individual projects make up the blocks.  This structure has been exploited by Sweeney 

and Murphy (1979) for the solution of large decomposable integer programs, including the multi-

item scheduling problem (Sweeney and Murphy, 1981).  Sweeney and Murphy (1979) develop 

their decomposition principle which is very similar to Dantzig-Wolfe decomposition in that it 

exploits the block-angular structure of large problems to decompose them into a set of smaller, 

easier-to-solve problems.  The main difference is that the Sweeney-Murphy decomposition 

algorithm is designed for integer problems, while Dantzig-Wolfe has focused primarily on 

continuous, linear programs.  The subproblems are solved to calculate a set of best solutions for 

each subproblem.  These sets of best solutions are fed to the master problem which attempts to 

identify one solution from each subproblem which is both feasible and optimal to the original 

problem.  If a combination of solutions cannot be identified, additional solutions are generated by 

the subproblems and fed to the master problem.  This process continues iteratively until an optimal 

solution is found. 

The Sweeney-Murphy decomposition approach has been applied by Deckro et al. (1991) to the 

RCMPSP.  The master problem includes the resource constraints imposed on the overall program.  

The subproblems include project-specific constraints.  They provide an illustrative example with 

eight projects. The original problem, before decomposition, would have 880 0-1 variables and 374 

constraints – a prohibitively time consuming problem (Deckro et al., 1991: 114).  After 

decomposition, the largest subproblem had only 160 variables and the largest master problem had 

only 110 variables.  Deckro et al. (1991) also point out that the subproblems include project-

specific constraints which can be further subdivided into two sets: job completion constraints and 

activity precedence constraints (Deckro et al., 1991: 114).  The nature of both of these sets of 

subproblem constraints lend themselves to further exploitation. 

Multi-Modal, Resource-Constrained, Multi-Project Scheduling Problem.  The Multi-Modal, 

Resource-Constrained, Multi-Project Scheduling Problem (MRCMPSP) (Problem 8 in Figure 2-1), 

is a further generalization of the RCPSP.  It allows for multiple activity modes as well as multiple 

projects.  Vercellis (1994) presents this problem with an objective function to maximize the Net 
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Present Value (NPV) of a multi-project program by determining the mode under which to perform 

each activity.  

Vercellis solves this problem using a decomposition approach based on Lagrangian relaxation.  

Lagrangian relaxation is a method for simplifying, or relaxing, the constraint set of a problem.  

Suppose that the constraint set consists of a set of complicating constraints and a set of more 

tractable constraints, in the sense that, in the absence of the complicating constraints, the problem 

would be solved relatively easily.  It is possible to relax the problem by incorporating the 

complicating constraints into the objective function using appropriate multipliers.  If the 

multipliers are fixed, the relaxed problem can then be solved for the original problem variables.  

The solution approach then hinges on finding appropriate values for the multipliers. 

Geoffrion (1974) applies the relaxation approach to integer programming problems where it 

can be used to fathom solutions in branch-and-bound procedures and to derive cutting planes.  

Chalmet and Gelders (1976) use the approach for solving a warehousing model formulated in 0-1 

variables.  Fisher (1981) discusses a number of important issues revolving around the use of 

relaxation for integer programming problems including the selection of multipliers, the choice of 

competing relaxations, and the incorporation of the lower and upper bounding capabilities of the 

Lagrangian problem into branch-and-bounding procedures. 

Vercellis (1994) uses Lagrangian relaxation where he takes project precedence constraints and 

resource-partitioning constraints (these are the only two sets of constraints that tie projects to each 

other) and moves them to the objective function with Lagrangian multipliers.  The approach then 

decomposes this Lagrangian relaxation into subproblems, one for each project, which are easier to 

solve than the original integer program.  The subproblems are solved using the branch-and-bound 

algorithm presented in Speranza and Vercellis (1993).  The approach was tested on a number of 

problems with up to 10 projects, up to 20 activities per project, 2 or 3 modes per activity, and as 

many as 6 renewable resources.  Problem solution times were all on the order of minutes (Vercellis, 

1994: 274).  

Generalized, Multi-Modal, Resource-Constrained Multi-Project Scheduling Problem. Van 

Hove (1998) presents the Generalized, Multi-Modal, Resource-Constrained Multi-Project 

Scheduling Problem (GMRCMPSP) (Problem 10 in Figure 2-1).  This is a RCPSP with multiple 

modes, start-start precedence relationships with minimal lags, and multiple projects.  Van Hove 

decomposes the problem using Sweeney-Murphy decomposition and then solves the subproblems 
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using a modification of the enumeration scheme by Sprecher (1994).  Van Hove solves a problem 

with 4 projects, 25 activities per project, 2 or 4 modes per activity, and 4 resources per project.  

The projects are coupled together by a constraint on the use of nonrenewable resources. 

Summary 

A wide variety of problem types and solution methodologies provide a foundation upon which 

to formulate and solve the MRCMPSP-GPR/EXP (Problem 12 in Figure 2-1).  A formulation of 

the MRCMPSP-GPR/EXP, based on the PWW problem, is presented in the next chapter.  

Subsequent chapters present greater detail on the applicability of the above approaches to the 

MRCMPSP-GPR/EXP. 
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III. Methodology 

Introduction 

This chapter presents a mathematical formulation of the Multi-Modal, Resource-Constrained, 

Multi-Project Scheduling Problem with Generalized Precedence and Expediting Resources 

(MRCMPSP-GPR/EXP).  It also discusses the complexity of the MRCMPSP-GPR/EXP and 

describes an approach for decomposing the problem.  The decomposition of the problem serves as 

the foundation for the solution approach developed in this dissertation.  While the specific 

methodology for solving the decomposed problem is detailed in subsequent chapters, this 

methodology is outlined in this chapter to provide an overview of the research that follows. 

Mathematical Formulation 

The MRCMPSP-GPR/EXP consists of a multi-project program where precedence 

relationships (both standard finish-start and generalized) may exist between activities within a 

single project or between activities of different projects.  Figure 3-1 shows the activity-on-node 

network representation of an example problem with three projects.  Within the network, nodes 

represent activities while precedence relationships are represented by the directed arcs between the 

nodes.  Single-headed arcs denote standard precedence while double-headed arcs denote generalized 

precedence.  Only one generalized precedence is shown in the example problem – between activities 

B6 and C4.  

Each activity has one or more alternative execution modes which determine the duration and 

resource requirements of the activity.  By selecting alternative execution modes for an activity, it 

may be possible to either crash or extend the duration of the activity.  In practice, crashing an 

activity generally comes at the cost of greater resource utilization while extending an activity may 

release resources for use elsewhere. 

Resources may be renewable, nonrenewable, or doubly constrained.  Renewable resources are 

those which are reusable from period to period (such as manpower, machinery, and space) but are 

limited on a per-period basis.  Nonrenewable resources are those which are expended once used 

(such as fuel and construction materials) and are limited at the project or program level.  Doubly-

constrained resources are those whose availability is limited at the project or program level, as well 

as on a per-period basis.  Budget is a good example of a resource which may be doubly 
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constrained.  While the total program budget may be $1 million dollars, spending may be capped at 

$10,000 per period.  

A1

A3

A2 A4

A5

B1

B4

B2

B6

B5

B7B3

C1

C4

C5

C6

C2

C3

T

Activities

Program “ABC”

Project A

Project B

Project C

 

Figure 3-1. Activity-on-Node Representation of Example Problem 1 

 

The development of a feasible program schedule is constrained by limitations on resources, as 

well as the program planning horizon.  Because of the tradeoff between the duration and resource 

utilization of each activity, prudent selection of activity execution modes becomes crucial.  In 

practice, it is generally necessary to crash some activities and extend others.  For example, 

consider the three-activity project depicted in Figure 3-2 with activity data in Table 3-1.  (Note that 

activity T is a dummy activity with zero duration and resource utilization.)  If the shortest-duration 

modes are selected for each activity, then Activity 1 will require four units of some renewable 

resource and Activity 2 will require five units of the same resource.  If sufficient resources were 
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available over the entire project planning horizon (i.e., at least nine units per period), Activities 1 

and 2 could start simultaneously and project completion would occur at the end of Period 4.  If, 

however, only eight units of resource are available in each time period, then the activities would 

have to be performed in series and project completion would occur at the end of Period 7.  Though 

the shortest-duration mode was selected for each activity, there is no guarantee that this selection 

yields the earliest project completion time.  Furthermore, this selection of modes need not even 

yield a feasible schedule.  If, for instance, the project must be completed no later than Time Period 

6, this schedule is not feasible. 

 

 2

 1

T

 

Figure 3-2. Example Problem 2 

Table 3-1. Example Problem 2 

 
Activity 

 
Mode 

 
Duration 

Resource 
Utilization 

1 1 3 4 
 2 5 2 
2 1 4 5 
 2 7 2 

T 1 0 0 
 

In Example Problem 2, it is also possible to select the longest-duration modes for each activity.  

The activities can be started simultaneously since their combined resource utilization of five units 

does not exceed the per-period availability of eight units.  The earliest project completion time, 

though, is still at the end of Period 7 (i.e., the maximum duration of the two activities).  Again, this 

selection of modes is infeasible for a planning horizon of six time periods. 

The only feasible schedule for the project exists when the longest-duration mode is selected for 

Activity 1 and the shortest-duration mode is selected for Activity 2.  The activities can be started 

simultaneously since they require a total of only seven units of resource and the project can be 

completed by the end of Period 5 which is within the project’s planning horizon of six periods. 
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While the crashing and extending of activities (through mode selection) is vital in the program 

scheduling process, additional scheduling options may be made possible through the availability of 

additional resources.  These additional, or expediting, resources may be obtained at some fixed 

price, subject to availability.  For example, during a military airlift operation the availability of 

transport aircraft is limited on a per-period basis.  It is well established that the careful assignment 

of specific types of transport aircraft to specific routes is essential to a successful operation (this 

assignment of aircraft to routes constitutes mode selection).  It may be possible, however, to 

purchase, reassign, or lease additional aircraft to supplement the aircraft which are regularly 

available.  This is, after all, the basis for the Ci vilian Reserve Aircraft Fleet (CRAF) program.  

Just as the availability of regular aircraft is limited so is the availability of the expediting aircraft.  

Furthermore, though the acquisition costs of the regular aircraft may be viewed as a sunk cost (at 

least in regards to the specific operation), the acquisition cost for the expediting aircraft are 

explicitly considered since they are incurred specifically for the given operation. 

Expediting resources are so named because they give greater flexibility to the selection of 

activity modes and start times.  Consequently, the set of feasible schedules becomes larger and it 

may be possible to find a feasible schedule with an earlier completion time.  In Example Problem 

2, if at least one unit of expediting resource is available in each time period, then selecting the 

shortest-duration mode for each activity will lead to a feasible schedule which can be completed by 

the end of Period 4 (i.e., project completion has been expedited).  The only question that remains is 

whether or not the benefit of finishing the project one time period earlier than otherwise possible 

outweighs the cost of the additional resource.  The answer to this question depends, of course, on 

the cost of the expediting resource and the benefit gained by expediting project completion. 

The scheduling objective may take a variety of forms.  For example, the project’s duration may 

be minimized subject to a budget restriction on expediting resources.  The cost of expediting 

resources may, on the other hand, be minimized subject to completing the project by a fixed due 

date.  Even more general objectives may include bonuses and penalties for early or late completion 

of the project relative to the due date or they may include costs based on the activity modes 

selected.  Regardless of the program objective considered, any solution to the MRCMPSP-

GPR/EXP will include the start time and execution mode of each activity, as well as the types and 

number of expediting resources to acquire. 
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An important note to consider is that, while more scheduling options (i.e., activity execution 

modes and expediting resources) provide a larger set of feasible schedules from which to choose 

and give a planner greater flexibility, the problem also becomes larger and it becomes more 

difficult to find an optimal schedule. 

Assumptions.  The mathematical formulation of the MRCMPSP-GPR/EXP begins with the 

following assumptions: 

1. A program consists of a fixed set of interrelated projects.  The interrelationships between 
activities in one project and activities in another project are fixed and known. 

 

2. A project consists of a fixed set of interrelated activities.  The interrelationships between 
activities within a project are fixed and known. 

 

3. An activity is performed in one of multiple alternative execution modes.  Each mode has a 
fixed duration and per period requirement for renewable, nonrenewable, and doubly-
constrained resources.  The demand for a given resource remains constant from period to 
period. 

 

4. Activities are not allowed to be split; once an activity begins, it will continue until 
complete. 

 

5. The program has a fixed and known planning horizon.  The program may also have a due 
date.  Each individual project has an early start time no earlier than time period zero and a 
fixed due date no later than the program due date.  

 

6. Activity durations and resource utilizations, as well as resource availabilities, are integer 
valued. 

Notation.  This section presents the notation used in the mathematical formulation of the 

MRCMPSP-GPR/EXP.  The notation is explained further when introduced in the discussion that 

follows. 

General Sets: 

 P = the number of projects 

 Ip = the set of activities in project p 

 Mpi = the set of execution modes for activity i of project p 
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Activity Interrelationship Sets: 

 O0 = the set of program-level (inter-project) standard precedence relations 

 Op = the set of standard precedence relations within project p 

 N0 = the set of program-level (inter-project) generalized precedence relationships 

 Np = the set of generalized precedence relationships in project p 

 

Resource Sets: 

 RQ  = the set of all renewable resources 

 RQ0  = the set of program-level renewable resources 

 R
pQ  = the set of renewable resources unique to project p 

 

 NQ  = the set of all nonrenewable resources 

 NQ0  = the set of program-level nonrenewable resources 

 N
pQ  = the set of nonrenewable resources unique to project p 

 

Note that doubly-constrained resources are not explicitly considered but they belong to the set 

of renewable resources and to the set of nonrenewable resources.  Doubly-constrained resources 

will be identified solely by their membership in the other two sets of resources. 

 

Special Indices: 

 p(i) = activity i of project p 

 T = the dummy terminal activity of the program 

 Tp = the dummy terminal activity of project p 

 

Time-Related Parameters: 

 F = the early program completion time 

 G = the program completion due date 

 D = the program planning horizon (F < G < D) 

 



 3-7

 Ep = the early start time of project p 

 Fp = the early completion time of project p 

 Gp = the completion due date of project p 

 Dp = the planning horizon of project p (Fp < Gp < D p) 

 

 epi = the early start time of activity p(i) 

  lpi = the late start time of activity p(i)  

 wpi = [epi, lpi], the start time window of activity p(i) 

 

 dpim = the duration of activity p(i) in mode m 

 

Resource-Related Parameters: 

 R
pimqr  = the units of renewable resource q required by activity p(i) in mode m  

 R
qtR  = the units of renewable resource q available at time t 

 R
qtH  = the units of expediting, renewable resource q available at time t 

 

 N
pimqr  = the units of nonrenewable resource q required by activity p(i) in mode m 

 N
qR  = units of nonrenewable resource q available  

 N
qH  = the units of expediting, nonrenewable resource q available  

 

Cost Parameters: 

 cpimt = cost of beginning activity p(i), executed in mode m, at time t 

 R
qtc  = cost of an expediting unit of renewable resource q at time t  

 N
qc  = cost of an expediting unit of nonrenewable resource q 

 bt = benefit for completing the program at time t (early completion) 

 at = cost for completing the program at time t (late completion) 
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Binary Variables: 

 xpimt = 1, if activity p(i) is executed in mode m and starts at time t 

  = 0, otherwise 

 tTp
x  = 1, if terminal activity Tp of project p starts at time t 

  = 0, otherwise 

 Ttx  = 1 if program terminal activity T starts at the beginning of period t 

  = 0, otherwise 

 

Expediting Resource Variables: 

 R
qth  = the units of expediting, renewable resource q used at time t  

 N
qh  = the units of expediting, nonrenewable resource q obtained 

Numbering of Activity Modes.  The execution modes of each activity in the program are 

numbered in order of increasing duration.  In mathematical terms, let Mpi be the set of execution 

modes for activity p(i), letM= M pi  be the number of modes of activity p(i), and let dpim be the 

duration of mode m of activity p(i).  Then for each activity, its execution modes will be numbered 

such that d d dpi pi piM1 2? ? ? . 

Activity Start Time Windows.  One of the advantages of the Pritsker, Watters, Wolfe (1969) 

model of the Resource-Constrained Project Scheduling Problem (RCPSP) over the Bowman (1959) 

model is its variable definition.  For any given activity i, Bowman defines a 0-1 variable for every 

time period in which activity i could be in progress.  Pritsker, Watters, and Wolfe, by contrast, 

define a 0-1 variable for only those time periods in which activity i can finish.  This alternate 

variable definition serves to reduce the number of variables in the model.  Because of its variable-

reduction property, the Pritsker, Watters, Wolfe variable definition is used in this study, with one 

modification – instead of reflecting activity finish times, the variables in the subject model reflect 

activity start times.  This modification has no technical impact on the formulation and is used 

simply out of this author’s preference. 
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 (a) (b) 

 

 
(c) 

 

 

Figure 3-3. Example Activity Start Time 
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With the modified Pritsker, Watters, Wolfe variable definition, each activity has a set of 0-1 

variables which reflect the possible start times for the activity.  It is possible to define a start time 

variable for every period in the program planning horizon, but this typically results in more 

variables than necessary.  For example, assume a program has one activity with unit duration and 

that the program planning horizon is ten time periods (see Figure 3-3).  The single activity would 

then have ten associated start time variables since it could start in any of the ten time periods in the 

program planning horizon (Figure 3-3a).  On the other hand, if the duration of the activity were 

two, then the activity will have only nine associated variables since it cannot possibly start in time 

period ten and finish by the end of the planning horizon (Figure 3-3b). 

Now consider the addition of a second activity of duration two (Figure 3-3c).  If the original 

activity must precede the second, then the number of variables associated with the original activity 

reduces to seven.  If the original activity begins in time eight or after, it cannot finish in time for the 

second activity to be complete by the end of the program planning horizon.  Following this 

inductive reasoning, it is clear that the more constrained an activity becomes in terms of duration 

and activity interrelationships, the fewer variables are required to reflect all of the possible start 

times of the activity.  This is the power of the Pritsker, Watters, and Wolfe variable definition. 

Since there is considerable benefit in reducing the number of variables as much as possible (to 

improve computational efficiency), it is useful to determine the minimal interval of possible start 

times for each activity.  This minimal interval is referred to as the activity’s start time window.  To 

determine the start time window for all of the activities in the program, the Generalized Critical 

Path Method (GCPM) is used.   

The GCPM is a generalization of the Critical Path Method (CPM).  While the CPM (see 

Schtub, Bard, and Globerson, 1994: 339) finds the early and late start times of activities subject to 

standard precedence relationships, the GCPM extends this approach to generalized precedence 

relationships.  The GCPM algorithm is as follows: 

 

Generalized Critical Path Method (GCPM) 

 

1. Set the early start time of each activity equal to the release date of the project of which it is 
a member. 

 
2. For each activity i, in numerical order, change its early start time to the greatest of the 

following: 
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a. its current early start time, 
b. the early start time plus duration of each of its standard predecessors, 
c. the early start time of activity j plus minimum time lag between activity j and activity 

i, for each activity j which is a generalized predecessor of activity i. 
 
3. If the early start time of any activity changed at Step 2, repeat Step 2.  
 
4. For each activity i, in numerical order, check each activity for which activity i is a 

generalized predecessor.  If the early start time of any generalized successor of activity i is 
greater than the early start time of activity i plus the maximum time lag, change the early 
start time of activity i to the greatest of the early start time minus maximum time lag of 
each generalized successor of activity i.   

 
5. If the early start time of any activity changed at Step 4, repeat Step 2.  If not, the early 

start time of each activity has been found. 
 
6. Set the late start time of each activity equal to the program horizon minus its duration.  
 
7. For each activity i, in reverse numerical order, change its late start time to the least of the 

following: 
 

a. its current late start time, 
b. the late start time of each of its standard successors minus the duration of activity i, 
c. the late start time of each activity generalized successor of activity i minus its 

minimum time lag from activity i. 
 
8. If the late start time of any activity changed at Step 7, repeat Step 7.  
 
9. For each activity i, in reverse numerical order, check each activity which is a generalized 

predecessor of activity i.  If the late start time of activity i is greater than the late start time 
of any generalized predecessor plus its maximum lag time, change the late start time of 
activity i to the least of the late start times plus maximum time lag of each generalized 
predecessor of activity i.   

 
10. If the late start time of any activity changed at Step 9, repeat Step 7.  If not, the late start 

time of each activity has been found. 
 

With the GCPM defined, activity start time windows are determined using the following four-

step procedure: 

 

Determining Start Time Windows 

Step 1. Relax the problem to an unconstrained network problem, eliminating all of the 
resource considerations of the original problems.  Consider only the activity 
precedence relationships and project early start times, Ep. 
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Step 2. Using Mode 1 of each activity (i.e., the modes of shortest duration), use the GCPM to 

determine the early start time, epi, of each activity (this includes the early completion 
time, F, of the program).  

 
Step 3. Using Mode 1 of each activity and letting the program planning horizon, D, be the 

expected completion dates of the program and projects, use the GCPM again to 
determine the late start time, lpi, of each activity.   

 
Step 4. The start time window of activity p(i) is the closed interval [epi, lpi]. 
 

Note that the use of the shortest-duration mode of each activity is important at Step 2.  To see 

why, assume all activities are set to Mode 1 except for activity p(i) (a non-terminal activity) which 

is set to Mode m*.  (We assume that the terminal activity is a dummy activity of zero duration.)  

Assume that the duration of Mode m* is k units longer than that of Mode 1.  When the GCPM is 

used to determine the early start times of the activities, either activity p(i) is on a critical path or it 

is not.  If it is, then there is at least one activity, call it activity q(j) (q may equal p), which is on the 

same critical path and which immediately follows activity p(i).  If epi is the early start time of 

activity p(i), then the early start time of activity q(j) is eqj = epi + dpim* = epi + dpi1 + k.  If activity 

q(j) has no other predecessors which are critical, then eqj is at least one time period later than if 

activity p(i) were executed in Mode 1 and, consequently, eqj is not the earliest possible start time of 

activity q(j).  If activity q(j) has other predecessors which are also critical activities or if activity 

p(i) is not on a critical path, then the above argument is not valid.  However, since we do not know 

a priori the relation of activities p(i) and q(j) to the critical paths, it is necessary to use Mode 1, the 

shortest-duration mode, for each activity to prevent such problems. 

The argument for using Mode 1 for every activity in Step 3 is similar to the argument for using 

them in Step 2.  If activity p(i) is scheduled so it finishes as late as possible, but it is executed in a 

mode with a longer duration than that of Mode 1, the resultant start time will be earlier than if 

activity p(i) were executed in Mode 1.  Consequently, the calculated late start time of activity p(i) 

will be too early. 

Constraints.  As constraints are developed below, they are consecutively numbered.  The 

number assigned to a constraint will remain unchanged throughout the discussion.  The constraints 

are: 
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Execution Mode and Activity Start Time 

An activity can be executed in only one mode and is started only once.  Define variable xpimt to 

be unity if activity p(i) is executed in mode m and starts at the beginning of time period t; xpimt 

equals zero otherwise. The constraint 

 x pimt
t wm M pipi ??
?? ? 1 , PpIi p ???? ,  (1) 

assures a unique execution mode and start time for each activity.  Note that Ip is the set of activities 

in project p, where P is the set of projects in the program, Mpi is the set of modes for activity p(i), 

and the time index t is summed over the start time window wpi of activity p(i). 

Activity Precedence 

Activity precedence may occur at the program level (i.e., inter-project) or at the project level 

(i.e., intra-project).  Precedence constraints may indicate that one activity precedes another 

(standard precedence) or that the start times of two activities are related (generalized precedence).  

Standard precedence is common to scheduling networks.  Generalized precedence is less common 

but is included for its applicabili ty to many problems of interest, including Joint Campaign 

Planning (where the start times of two or more operations may need to be coordinated) and 

program management (where concurrent engineering approaches are being used). 

Recall that the duration of activity p(i) is dependent on its execution mode.  Let dpim be a 

known parameter which denotes the duration of activity p(i) when executed in mode m.  In 

addition, recall that variable xpimt is unity for exactly one mode/start time combination.  The 

duration of activity p(i) is, then, represented by the term, 

d xpim pimt
t wm M pipi ??
?? . 

For example, if activity p(i) is executed in mode m* and begins at time t*, then xpim*t* = 1 and 

the duration of activity p(i) is dpim*. 

The start time of activity i is given by the term: 

? ?
? ?i iMm wt

pimttx . 

Given the above expressions for the duration and start time of activity p(i), standard 

precedence constraints can be defined.  If activity p(i) directly precedes activity p(j), then the start 
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time of activity p(j) must be no earlier than the start time of activity p(i) plus the duration of 

activity p(i).  Thus, 

? ?? ?? ?
? ?? ?? ?

??
pi pipi pipj pj Mm wt

pimtpim
Mm wt

pimt
Mm wt

pjmt xdtxtx , PpOji p ???? ,),(   

or 

 0)( ??? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmt
Mm wt

pimtpim txxdt , PpOji p ???? ,),(  (2) 

where Op is the set of standard precedence relations in project p and ( , )i j Op?  denotes that 

activity p(i) precedes activity p(j). 

At the program level, assume activity i of project p directly precedes activity j of project p .  

The start time of activity p (j) must, then, be no earlier than the start time of activity p(i) plus the 

duration of activity p(i).  Thus, 

? ?? ?? ?
? ?? ?? ?

??
pi pipi pijp jp Mm wt

pimtpim
Mm wt

pimt
Mm wt

jmtp xdtxtx , 0),( Ojppi ??   

or 

 0)( ??? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtp
Mm wt

pimtpim txxdt , 0),( Ojppi ??  (3) 

where O0 is the set of program-level standard precedence relations and 0),( Ojppi ?? denotes that 

activity p(i) precedes activity p (j).  

Generalized precedence constraints at the project level are given by: 

 min
ij
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 max
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or 
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 0min ??? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmtij
Mm wt

pimt txtx ? , PpNji p ???? ,),(  (4) 

 0max ???? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmtij
Mm wt

pimt txtx ? , PpNji p ???? ,),(  (5) 

where Np is the set of generalized precedence relationships in project p, pNji ?),(  denotes that 

activity p(i) is a generalized predecessor of activity p(j), and min
ij?  and max

ij?  are the minimal and 

maximal start time lags between activities i and j. 

At the program level, generalized precedence constraints are given by: 

 0min ??? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtpij
Mm wt

pimt txtx ? , 0),( Njppi ??  (6) 

 0max ???? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtpij
Mm wt

pimt txtx ? , 0),( Njppi ??  (7) 

where N0 is the set of program-level generalized precedence relationships and 0),( Njppi ??  

denotes that activity p(i) is a generalized predecessor of activity p  (j). 

Program/Project Completion 

The program has a fixed planning horizon by which the program must be completed and 

individual projects may have individual planning horizons as well.  (If a project does not have a 

distinct horizon, its horizon is assumed to be the same as the program’s.)  Planning horizons must 

be chosen such that the projects / program can be feasibly completed within the planning horizons.  

The convention used in the Program Attributes Generator with Expediting Resources (PAGER), 

which is introduced in the next chapter, is to calculate the planning horizon simply by adding the 

duration of the longest-duration mode of each activity.  The program horizon represents the 

minimum amount of time required to complete the program if regularly-available resources are 

constrained to a point where only one activity can be scheduled at a time and in its longest-duration 

mode. 

The planning horizons are used in determining activity start time windows.  Though planning 

horizons are considered when the start time windows are calculated, additional constraints are 

required to enforce the planning horizons.  Otherwise, it is possible for an activity to start within its 

start time window and end beyond a project or program planning horizon.  For instance, suppose 
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project p has dummy terminal activity Tp and that Tp has a single predecessor, activity p(i)*.  Since 

activity Tp has zero duration, the late start time of activity p(i)* is calculated as the horizon of 

project p less the duration of activity p(i)*  executed in its shortest mode.  If activity p(i)*  begins 

at its late start time but, however, in a mode of longer duration, its completion time will be beyond 

the project planning horizon.  It becomes necessary, then, to include completion time constraints. 

 To simplify the completion time constraints, dummy terminal activity, T, is added for the 

program and dummy terminal activity, Tp, is added for each project p.  Terminal activities have 

zero duration.  Then, 

 Dtx
Twt

Tt ??
?

  (8) 

 p
wt

tT Dtx
pT

p
??

?
, ? ?p P  (9) 

Resources 

There are three types of resources: renewable resources, nonrenewable resources, and doubly-

constrained resources.  Doubly-constrained resources are handled by extending the sets of 

renewable and nonrenewable resources and are not modeled explicitly.  Thus, if resource q* is a 

doubly-constrained resource, renewable resource constraints are added to represent the per-period 

restriction on resource q* (one constraint for each time period) and a single nonrenewable resource 

constraint is added to represent the overall restriction on resource q*. 

Activity p(i) has a per-period requirement of R
pimqr  units of renewable resource q if executed in 

mode m and there are R
qtR  units of renewable resource q available in time period t.  Expediting 

units of renewable resource q are available in time period t at a per unit cost of R
qtc and up to the 

limit of R
qtH  additional units.  Activity p(i) also has a requirement of N

pimqr  units of nonrenewable 

resource q if executed in mode m.  There are N
qR  units of nonrenewable resource q available for 

the entire program or project.  Expediting units of nonrenewable resource q are available at a per 

unit cost of N
qc and up to the limit of N

qH  additional units. 

Resources may be specific to a given project (project-level) or may be in demand by more than 

one project (program-level).  Let RQ0  be the set of program-level renewable resources and let R
pQ  
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be the set of renewable resources unique to project p.  Similarly, let NQ0  be the set of program-

level nonrenewable resources and let N
pQ  be the set of nonrenewable resources unique to project p. 

If variable R
qth  is the number of expediting units of renewable resource q used in time period t 

and variable N
qh  is the number of expediting units of nonrenewable resource q used, then for 

project-level renewable resources: 

 R
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and 

 R
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R
qt Hh ? , PpDEtQq pp

R
p ???? ],,[,  (11) 

For program-level renewable resources in demand by more than one project: 
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For project-level nonrenewable resources: 
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For program-level nonrenewable resources in demand by more than one project: 
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and 

 N
q

N
q Hh ? , NQq 0??  (17) 

Objective Function.  A wide variety of objective functions may be used for the MRCMPSP-

GPR/EXP.  The objective may be stated generally as the minimization of program costs subject to 

a completion due date.  The generality of the objective function is dependent on what program 

costs are included.  Three objective functions are specifically addressed here, each successive 

function being a generalization of the previous.  The algorithm developed for the MRCMPSP-

GPR/EXP solves for the most general of the objective functions and, consequently, for the more 

specific. 

1.  Minimize Program Duration 

One common objective is to minimize program duration.  In this case, the objective function is: 

 Minimize ?
?

?
D

Ft
Tttxz  (18) 

where F is the earliest possible completion time of the program and D is the program due date. 

This objective function could be accompanied by a budget constraint to restrict program cost, 

such as the cost of expediting resources. 

2.  Minimize Program Expediting and Completion Costs 

A more general objective is to minimize program costs, including the cost of expediting 

resources and the penalty for late program completion.  In this case, the objective function 

becomes: 

 Minimize ??? ?
??? ?

???
D

Ft
Ttt

Qq

N
q

N
q

Qq

D

t

R
qt

R
qt xahchcz

NR 0

 (19) 

where R
qtc  and N

qc  are the costs for expediting resources and at is the cost for completion of the 

program at time t.  Note that program completion costs could be bonuses for early completion 

(completion by some target completion date or due date, G) and/or penalties for late completion 

(vis-à-vis G).  Since this is a minimization function, a bonus (a negative cost) would be negative-

valued.  If both bonuses and penalties were considered, the final term in the objective function 

?
?

D

Ft
Ttt xa  
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would be divided between two terms, one for bonuses on the interval [F, G] and the other for 

penalties on the interval [G+1, D]  as in 

???
????

??
D

Gt
Ttt

G

Ft
Ttt

D

Ft
Ttt xaxaxa

1

PenaltyBonus . 

Objective Function (19) is a generalization of Objective Function (18), to minimize program 

duration.  If the costs of expediting resources are moved to the constraint set as part of a budget 

constraint, or if these costs are considered negligible, then costs R
qtc  and N

qc  become zero.  In 

addition, if the completion costs, at, are set to t, then Objective Function (19) is precisely the 

objective of minimizing program duration. 

3.  Minimize Program Mode/Time, Expediting, and Completion Costs 

A further generalization is to minimize program costs, including costs assessed for executing 

an activity in a given mode and starting at a given time, the cost of expediting resources, and the 

completion costs.  In this case, the objective function becomes: 

Minimize 
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where cpimt is the cost for executing activity p(i) in mode m and starting at time t. 

If costs cpimt are set to zero, Objective Function (20) reduces to Objective Function (19). 

Complete Model.  The complete formulation of the MRCMPSP-GPR/EXP, with Objective 

Function (20),  is given by: 

Minimize 
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Subject To 
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 0?R
qth  and integer, tq,?  (22) 

 0?N
qh  and integer, q?  (23) 

Problem Size and Complexity 

The mathematical formulation of the MRCMPSP-GPR/EXP is, as expected, large and 

complicated.  The number of variables and constraints for even a relatively small problem can be 

daunting.  Returning to the example illustrated in Figure 3-1, consider the activity data listed in 

Table 3-2.  The example problem has 3 projects, a total of 19 activities (including the dummy 

program terminal activity), and up to three modes per activity.  In addition, there are two 

renewable resources, two nonrenewable resources, and one doubly-constrained resource, all 

considered to be program-level resources.  A program planning horizon of 30 time periods has been 

assumed. 

The number of binary variables, xpimt, may be as many as  
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, 

where the first term represents the non-dummy activities, the second represents the project dummy 

terminal activities, and the last term represents the program dummy terminal activity.  This number 

can be approximated as WMIP p ??? , where pI  is the average number of activities per project 

(including dummy terminal activities), M  is the average number of modes per activity, and W  is 

the average length of the activity start time windows.  In the example problem, there are on the 

order of 350 binary variables, assuming 10 to be the average length of the activity start time 

windows.  (Clearly, the tightness of the start time windows will affect the problem size.) 

The number of renewable resource variables, R
qth , is  

DQR ? ,  
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where RQ  is the total number of renewable and doubly-constrained resources (project-level and 

program-level) and D is the program planning horizon.  In the example problem, there are 90 

renewable resource variables. 

Table 3-2. Activity Data for Example Problem 

Act Mode Dur R1 R2 N1 N2 D1
A1 1 2 0 4 4 4 9

2 5 10 0 3 4 6
A2 1 4 0 3 6 8 7
A3 1 2 3 0 9 1 9

2 9 0 6 9 1 5
A4 1 4 0 9 9 8 4

2 6 0 9 7 7 3
3 9 6 0 6 7 3

A5 1 3 0 10 10 2 5
B1 1 2 3 0 9 7 5
B2 1 6 7 0 5 6 9

2 8 0 5 5 2 8
B3 1 8 8 0 2 10 4
B4 1 10 1 0 6 8 8
B5 1 4 0 2 10 5 7

2 8 0 2 10 5 5
3 10 6 0 10 5 2

B6 1 5 0 8 5 3 4
2 6 0 6 5 2 3

B7 1 2 8 0 3 5 6
2 4 6 0 3 5 4
3 10 4 0 3 5 1

C1 1 1 0 7 8 7 4
2 6 4 0 6 5 3
3 10 0 7 4 5 2

C2 1 10 4 0 2 4 5
C3 1 2 3 0 5 8 9
C4 1 5 0 5 4 10 5

2 8 0 5 3 7 4
3 10 6 0 2 7 4

C5 1 9 0 3 8 1 3
C6 1 3 8 0 8 10 6

2 6 7 0 6 9 5
3 10 7 0 3 7 4

T 1 0 0 0 0 0 0  

The number of nonrenewable resource variables, N
qh , is  

NQ .   

That is, one variable for each nonrenewable resource (project- and program-level) and one variable 

for each doubly-constrained resource (project- and program-level).  In the example problem, there 

are three nonrenewable resource variables. 

In all, the example problem has 443 variables.  Table 3 -3 summarizes these results. 
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Table 3-3. Number of Variables 

Variable 
Type 

Number of  
Variables 

Variables in 
Example Problem 

xpimt ?? ?? ? ? ?
?? ?? ? ? ?
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 350 

R
qth   DQR ?  90 

N
qh  NQ  3 

Total  443 
 

Next, consider the number of constraints.  Table 3-4 outlines the number of each type of 

constraint, where R
pQ  is the average number of project-level renewable resources, N

pQ  is the 

average number of project-level nonrenewable resources, pO  and pN  are the average number of 

standard and generalized precedence relationships, respectively, per project, and 0O  and 0N  

are the number of program-level standard and generalized precedence relationships, respectively.  

There are a total of 232 constraints in the example problem. 

Finally, consider the complexity of the MRCMPSP-GPR/EXP.  This problem is a 

generalization of the Resource-Constrained, Multi-Modal, Project Scheduling Problem 

(RCMMPSP) which is known to be NP-Hard (Kolisch, 1995: 26).  In addition, Sprecher and Drexl 

state that if a RCMMPSP has more than one activity, just finding a feasible solution is an NP-hard 

problem (Sprecher and Drexl, 1996a: 3).   

In an effort to mitigate the computational difficulty of the MRCMPSP-GPR/EXP, this 

dissertation develops a methodology for decomposing the original problem into smaller, more 

tractable problems.  One of the research issues addressed is the tradeoff between the time saved in 

solving a number of smaller subproblems and the computation overhead associated with the 

iterative process of the approach.  Each of the smaller problems is still NP-Hard, but it is precisely 

this fact which makes decomposition an appealing approach.  Since the time to solve NP-Hard 

problems grows very quickly as the size of the problem grows, reducing the size of a problem 

should significantly reduce the time to solve it.  If the time saved solving each of the smaller 

problems is greater than the computational overhead, then the decomposition approach should be 

applied when possible.  Chapter VI addresses this research issue and provides results of testing of 

the decomposition approach. 
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Table 3-4. Number of Constraints 

Constraint 
Type 

Number of Constraints Constraints in 
Example Problem 

(1) pIP ?  19 

(2) and (3) op OPO ??  24 

(4) to (7) op NPN 22 ??  2 

(8) 1 1 
(9) < P  0 

(10) 
p

R
p DQP ??  0 

(11) 
p

R
p DQP ??  0 

(12) DQR ?0  90 

(13) DQR ?0  90 

(14) N
pQP ?  0 

(15) N
pQP ?  0 

(16) NQ0  3 

(17) NQ0  3 

Total  232 
 

Decomposition of the MRCMPSP-GPR/EXP 

The first step in decomposing the MRCMPSP-GPR/EXP is partitioning the constraints 

between those which apply to individual projects and those which apply to the entire program.  The 

program-level constraints are (3), (6), (7), (8), (12), (13), (16), and (17), while the project-level 

constraints are (1), (2), (4), (5), (9), (10), (11), (14), and (15).  The problem with partitioned 

constraints becomes: 

 

Minimize 
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Subject To 

Program-Level Constraints 
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Project-Level Constraints, p = 1, 2, 3,… , P 
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Variable Bounds 
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With this partitioning of constraints, the block-angular structure generally associated with 

Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) becomes apparent.  Figure 3-4 depicts 

this block-angular structure, where matrices Ap, p = 1, 2, ..., P+1, consist of the program-level 

coefficients associated with project p, matrices Bp, p = 1, 2, ..., P+1, consist of the project-level 

coefficients associated with project p, variables xp, p = 1, 2, ..., P+1, are the activity start time and 

expediting resource variables, and constants cp, p = 1, 2, ..., P+1, are the objective function 

coefficients associated with variable xp.  Note that xp is a mixed vector of variables where some of 

its elements are {0,1} and others are non-negative integers. 

 

Original Problem  
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where 

pA represents the program-level constraint coefficients associated with project p, 

pB represents the project-level constraint coefficients of project p, 

p, Pp ??1 , are indices representing the P projects / subproblems, and 

P + 1 is the index representing the program. 

Figure 3-4. Block-Angular Structure 
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Dantzig-Wolfe decomposition has proven valuable for linear programs with continuous 

variables.  Dantzig-Wolfe decomposition, however, is inappropriate for integer programming 

problems, such as the MRCMPSP-GPR/EXP, because the master problem develops a solution by 

finding an optimal affine combination of candidate solutions from the subproblems (extreme points 

of the feasible region).  In general, an affine combination of the candidate solutions from integer 

subproblems is not guaranteed to be integer-valued. 

Sweeney and Murphy (1979), however, developed a decomposition approach for integer 

programs with such a block-angular structure.  With Sweeney-Murphy decomposition, the 

individual projects can be separated into blocks, or subproblems.  Each subproblem is solved to 

find a set of k-best solutions (in terms of objective function value) for that subproblem.  These sets 

of best subproblem solutions are iteratively passed up to the master problem until the master 

problem identifies one solution from each subproblem (rather than an affine combination) which, 

collectively, are feasible to the original problem and provide the best overall solution to the original 

problem. 

Solution Methodologies 

The solution methodologies presented in this dissertation are motivated by the Sweeney-

Murphy decomposition approach.  Methodologies are needed for solving both the decomposed 

subproblems and the master problem.  Additionally, a methodology for generating instances of the 

MRCMPSP-GPR/EXP is required for testing the solution methodologies.  This section presents an 

overview of these methodologies. 

Problem Generation.  During a review of the literature, it was determined that no existing 

problem generator is capable of generating all of the characteristics of the MRCMPSP-GPR/EXP.  

Worse, most of the existing generators use the coefficient of network complexity (CNC) as their 

measure of network complexity.  The CNC, the ratio of arcs to nodes in the network, is easily 

implemented in a problem generator, but has considerable shortcomings (detailed in Chapter IV).  

Thesen (1977) developed an alternate measure of network complexity, the Thesen Restrictiveness 

(RT), which is recognized as a much better measure.  Still, only two generators (Schwindt, 1995, 

1996 and Drexl et al., 1997)) attempt to use the RT.  Unfortunately, both generators actually use 

the CNC to add arcs to a project network and then simply calculate the RT of the resulting 
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network.  If the desired RT is met or exceeded, the generators stop.  Unfortunately, the resulting 

RT may be well beyond what the user intended. 

The research presented in Chapter IV demonstrates a methodology for generating project 

networks using the RT directly.  In that way, researchers have control over the complexity of the 

networks which underlie their experiments.  With an RT-based project network as its core, the 

generator developed in Chapter IV adds the additional characteristics required by the MRCMPSP-

GPR/EXP.  Some of the methods presented by Kolisch et al. (1992, 1995) are used directly or 

extended as necessary.  Other features are added, such as an approach for converting standard 

precedence relationships (those produced by the network generator) into generalized precedence 

relationships. 

Single Project / Subproblem Solution.  The MRCMPSP-GPR/EXP can be solved directly as a 

large, single-project problem or decomposed into a set of smaller, semi-independent subproblems 

(themselves, single-project problems).  Whichever approach is used, a methodology for solving 

single-project instances of the MRCMPSP-GPR/EXP is required. 

 Chapter V develops an implicit enumeration algorithm for solving single-project instances of 

the MRCMPSP-GPR/EXP.  The algorithm is based on a scheme by Talbot (1982) for the Multi-

Modal, Resource-Constrained Project Scheduling Problem (RCPSP).  The scheme constructs 

project schedules by adding one activity to the schedule at a time.  First, a mode is selected for the 

activity and, then, a start time.  Feasibility tests are conducted at each step to fathom mode / start 

time combinations which are infeasible.  Bounding tests are also conducted to see if the growing 

schedule is dominated by the best incumbent schedule.  If the current mode / start time combination 

is either infeasible or dominated, that branch of the search tree is fathomed and a new mode / start 

time combination tried. 

While Talbots’ scheme provides a solid method for enumerating over the possible project 

schedules, it is extended for generalized precedence and expediting resources.  It is also expanded 

to generate a set of k-best solutions rather than a single optimal.  Generation of a set of solutions is 

explicitly required by the decomposition approach.  Even if problem decomposition is not the goal, 

however, these alternate solutions offer a decision-maker multiple options which can be evaluated 

using non-objective function criteria (e.g., managerial preference for certain mode choices). 
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Generation of the k-best solutions is made possible by fathoming branches of the search tree 

using the current k-th best solution rather than the current optimal solution.  If a solution is at least 

as good as the k-th best, the solution is added to the set and the k-th best solution is dropped. 

Decomposition / Master Problem Solution.  During the solution methodology, each 

subproblem is solved to find the k-best solutions for that subproblem.  These sets of k-best 

solutions are passed to a master problem (detailed in Chapter VI) which evaluates them, seeking to 

find one candidate solution from each subproblem which, collectively, are both feasible and 

optimal to the original problem.  If these criteria are not met, additional solutions are generated by 

the subproblems and passed to the master problem.  This iterative process continues until a feasible 

and optimal solution is found. 

An algorithm for solving the master problem is developed in Chapter VI.  The algorithm is an 

implicit enumeration algorithm, similar to that used for solving the subproblems, except that a 

subproblem solution is added at each level of the search tree rather than a single activity.  Again, 

feasibility and bounding tests are conducted in an attempt to fathom unproductive branches of the 

tree as early as possible. 

Also detailed in Chapter VI is a methodology for producing multipliers which form part of the 

subproblem objective functions.  These multipliers are developed to encourage the subproblems to 

comply with program-level constraints.  Theoretically, a good choice of multipliers will reduce the 

number of solutions required from the subproblems.  This assertion is tested in Chapter VI. 

Summary 

This chapter presented a mathematical formulation of the MRCMPSP-GPR/EXP, discussed 

the size and complexity of the MRCMPSP-GPR/EXP, and showed how the MRCMPSP-

GPR/EXP might be decomposed.  Additionally, three methodologies were overviewed: (1) problem 

generation; (2) single project / subproblems solution; and, (3) decomposition / master problem 

solution.  The next three chapters discuss in much greater detail these methodologies. 
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IV.  Problem Generation 

Overview 

This dissertation addresses the Multi-Modal, Resource-Constrained, Multi-Project Scheduling 

Problem with Generalized Precedence and Expediting Resources (MRCMPSP-GPR/EXP).  This 

problem and the solution methodologies presented in later chapters are part of a growing wealth of 

problem formulations and solution methodologies which comprise the field of resource-constrained 

project scheduling.  Ferreira et al. (1998) point out that the need to validate, scope, and score an 

ever-increasing number of competing algorithms and heuristics for scheduling projects under 

resource constraints implies the extensive use of simulation to test them against large and 

significant network testing sets.  In view of this need, three widely used test sets have been 

proposed over the years: those of Patterson (1984); of Alvarez-Valdez and Tamarit (1989); and of 

Kolisch et al. (1995) and Kolisch and Sprecher (1996). 

While standard test sets have proven their worth for many researchers, two conditions mitigate 

their value over time: 

1. They are inadequate for new problem types with characteristics not represented in the test 
set. 

 
2. Researchers have little or no control over the parameters used to develop the fixed test sets.  

These parameters (such as the complexity of the network) can greatly influence the 
difficulty of problem instances. 

 

To expand on this point, consider Patterson’s (1984) test set of 110 problem instances to 

compare four exact procedures for makespan minimization of the single-mode resource-constrained 

project scheduling problem (RCPSP).  Though this test set served as the benchmark for years, 

Kolisch et al. (1992) suggest that these test problems were not generated using a controlled design 

of specified parameters, consider only the single-mode and makespan-minimization cases, and have 

been shown to be among the easier instances of such problems, even among single-mode problems.  

For these reasons, Kolisch et al. argue that these problems should no longer be considered 

benchmark instances. 

To overcome the shortcomings of standard test sets, the development of methods to generate 

project networks is a key condition in the scientific assessment of so many different procedures on 

so many different problem types.  Unfortunately, the number of published generators available in 

the literature for resource-constrained project scheduling is limited (Ferreira et al., 1998:58).  A 
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review of the literature confirms this conclusion.  Five recent publicly-accessible generators 

(Demeulemeester et al., 1993; Kolisch et al., 1992, 1995; Schwindt, 1995, 1996; Drexl et al., 

1997; Agrawal et al., 1996) are reviewed below for this study.  Their key features are summarized 

in Table 4-7 at the end of this chapter. 

Demeulemeester et al. (1993) stress the random generation of project networks.  They argue 

that many project scheduling procedures work well for certain network structures and poorly for 

others.  To properly evaluate competing scheduling procedures, networks should be generated from 

among all feasible networks and not be limited to networks of some particular structure.  In the 

Demeulemeester et al. generator, referred to here as DDH, the number of nodes and arcs in the 

network can be specified by the user or randomly drawn from a number of probability 

distributions.  Arcs are then added or deleted until the desired number of arcs is achieved.  Activity 

durations, the number of renewable resources (limited to three), resource requirements and 

availabilities, and the events marking the project milestones are also randomly drawn from 

precoded distributions. 

While the philosophy used in the development of the DDH generator is a valid general 

approach to generator design, it ignores the issue that a key aspect of a class of algorithmic designs 

may be the exploitation of problem structure.  To evaluate an algorithm designed specifically for a 

target class of problems, a researcher requires a way to control the structure of the test problems.  

This sentiment is echoed by Kolisch et al. (1992, 1995) who have developed a problem generator 

which allows the user to set several project parameters.  Some of these parameters were proposed 

in the literature, while others were developed by Kolisch et al.  Entitled ProGen, their project 

generator includes single- and multi-mode activities, different categories of resources, and single- 

and multi-project scheduling problems.  ProGen has been used by a number of researchers in 

recent studies, including De Reyck and Herroelen (1996), Icmeli and Erenguc (1996), Ahn and 

Erenguc (1998), and Van Hove (1998).  In some cases, however, these researchers have added 

problem features of their own. Van Hove (1998), for instance, replaced the standard precedence 

constraints generated by ProGen with generalized precedence constraints. 

Working with ProGen as a base, two additional problem generators have been developed.  

Schwindt (1996) extended ProGen (called ProGen/max) to incorporate minimal and maximal time 

lags, as well as some additional problem parameters, such as the estimator of network 

restrictiveness suggested by Thesen (1977).  Drexl et al. (1997) extended ProGen to ProGen/ x?  in 



 4-3

order to incorporate new modeling extensions such as partially renewable resources, changeover 

times, and mode and set of mode identity. 

One final problem generator, DAGEN, was developed by Agrawal et al. (1996) to employ the 

network complexity index introduced by Bein et al. (1992).  The complexity index measures how 

far a given network is from a series-parallel network.  (The definition and significance of such a 

network is described below in the subsection entitled Network Complexity.)  Costs, duration, and 

resource requirements associated with the activities are generated randomly from uniform 

distributions. 

While problem instances for a great number of problem classes can be generated using the 

generators described above, none are capable of producing all of the characteristics of the 

MRCMPSP-GPR/EXP.  None of the generators are designed to generate (1) expediting resource 

availabiliti es and costs, (2) mode costs which can be constant, increasing, or decreasing with time, 

or (3) truly multi-project programs.  While ProGen suggests the capability of generating multi-

project problems, these problems have no precedence relationships between activities of one project 

and those of another (other than supersource and supersink dummy nodes which tie them together).  

Furthermore, the resources generated by ProGen are program-level resources only, with no 

consideration for project-specific resources. 

This research develops a problem generator entitled PAGER (Program Attributes Generator 

with Expediting Resources).  It was designed to incorporate all of the characteristics of the 

MRCMPSP-GPR/EXP.  As a generalization of many other problem types, PAGER’s usefulness is 

not limited to this sole class of problem.  Problem instances for the traditional PERT/CPM 

problem, the net present value problem, the job shop scheduling problem, the single- and multi-

modal, resource-constrained project scheduling problems, and others can be generated using 

PAGER.  The primary advantages of PAGER are fourfold: 

1. It can generate not only single-project problem instances, but truly multi-project problem 
instances, with interrelationships between projects, program-level (shared) resources, and 
project-specific resources. 

 
2. Parameters within a multi-project program can be set to independently structure each 

project, as well as their interrelationships.  This allows each project to have unique 
characteristics.  In ProGen, for instance, the number of activities in each project is drawn 
from the same distribution, whereas in PAGER, the user may specify a distinct distribution 
for each project. 
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3. It allows certain parameters (fixed by the user in other generators) to be drawn from user-
defined uniform distributions.  For example, in ProGen, resource strength (a measure of 
resource scarceness) is, by construction, the same for each resource.  In realistic problems, 
it is reasonable to expect some resources to be scarcer than others.  PAGER allows the 
value of resource strength to differ (randomly) for each resource.  

 
4. Some researchers may prefer certain problem-defining measures to others.  This is 

particularly true of measures of network complexity (e.g., Thesen, 1977; Kolisch et al., 
1992, 1995; De Reyck and Herroelen, 1996).  PAGER allows users to select from among 
two common measures of network complexity found in the literature, even allowing the 
user to use measures of network complexity simultaneously.  Generated problem instances, 
then, reflect the user’s preferences.  This flexibility also allows researchers to use a single 
generator to produce problem sets to compare these competing measures. 

 

 The remaining sections of this chapter proceed as follows: 

1. PAGER: Problem Generator develops the procedure for generating problems step by step.   
 
2. PAGER Implementation outlines the implementation of the PAGER program. 
 
3. Summary and Conclusions gives some final remarks. 
 

PAGER: Problem Generator 

The generation of problems using PAGER can be subdivided into six steps.  First, PAGER 

reads a problem specification file, which contains all of the problem parameters.  For each desired 

problem instance, basic problem data is then generated, a problem network is developed, resource 

demands and availabilities are determined, and problem cost data is generated.  Finally, the 

problem is output into any of three formats: ProGen format (depending on problem features), 

PAGER format, or MPS format.  Sample input and output files are found in Appendices B and C, 

respectively.  The six steps of problem generation are discussed in the following subsections.  

Figure 4-1 depicts the overall flow of the problem generation algorithm. 

Step 1 - Specification File Input.  The specification file (illustrated in Appendix B) is a simple 

text file through which the user may specify problem design preferences.  These preferences are the 

parameters used to generate basic problem data, the problem’s network structure, the resource 

data, and the cost data. 
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Generate Network

Generate Resource Data

Generate Cost Data

inst = inst + 1

inst = 1

Output Problem Instance

Read Specification File
(including number of
instances, MaxInst)

Generate Basic Data

Inst =
MaxInst?

Stop

No

Yes

 

Figure 4-1. Overall Flow of PAGER 

 

Once the specification file is read by PAGER, problem generation continues by sequentially 

performing Steps 2 through 6 for each problem instance desired.  In the discussion which follows, 

the notation used in ProGen is retained wherever possible.  In addition, three commonly used 

functions are defined as follows: 

round(x) : rounds the value of x to the nearest integer 

int(x) : truncates the value of x to the greatest integer x?  
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rnd[a, b] : a uniformly-distributed pseudorandom number from the interval [a, b] 

Pseudorandom numbers are constructed by transforming [0, 1] uniformly-distributed 

pseudorandom numbers generated using Marsaglia’s Multiply-with-Carry (MWC) generator 

(Wheeler, 1994).  Marsaglia’s MWC generator is easy to implement and produces pseudorandom 

number streams with an extremely long period -- about 2125 (Wheeler, 1994).  ProGen uses the 

random number generator developed by Schrage (1979) which has a period of 231. 

Step 2 - Basic Data Generation.  Basic problem data includes the number of activities in each 

project, the number of modes for each activity, the program and project release dates, the program 

and project due date factors, and the duration of each activity mode.  This data is randomly 

generated based on the parameters specified by the user through the problem specification file.  

Parameters used in generating basic data are summarized in Table 4-1.   

Table 4-1. Input Parameters for Basic Data 

Parameter Definition Bounds 

P number of projects (the program is treated as project p = 0) [1, 10] 

maxmin / pp JJ  min/max number of activities in project p [1, 99] 

maxmin / pp MM  min/max number of modes per activity in project p [1, 10] 

maxmin / pp dd  min/max duration of activities in project p [0, 999] 

maxmin / pp ??  min/max release date of project p (including p = 0) [0, 999] 

maxmin / pp ??  min/max due date factor of project p (including p = 0) [0.0, 1.0] 

 

The procedures used to generate basic problem data (summarized in Table 4-2) are materially 

the same as those used in ProGen.  The difference is that ProGen uses the same lower and upper 

bounds to generate this data for each project, while PAGER allows the user to specify different 

bounds for each project.  The advantage is that the user has greater flexibility in designing 

programs.  If, for example, the researcher is interested in investigating the impact of project 

homogeneity on scheduling, he/she may generate and compare problems where the projects have 

similar numbers of activities and activity durations versus problems where some projects have 

many short activities and other projects have fewer, but longer, activities.  On the other hand, the 
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researcher may want to design a program where some projects have controllably early release dates 

and other projects have controllably late release dates. 

Table 4-2. Basic Data Variables  

Parameter Definition 

P number of projects (the program is treated as project p = 0) 

pJ  the number of activities in project p 

piM  the number of modes of project p, activity i 

dpim the duration of project p, activity i, mode m 

p?  the release date of project p (including p = 0) 

p?  the due date factor of project p (including p = 0) 

 

Using the parameters in Table 4-2, the following data is generated, where the program is 

considered to be project p = 0. 

a. Number of activities in project p, including the project source and sink. 
 

? ?? ? 2, maxmin ?? ppp JJrndroundJ , Pp ,...,3,2,1?  

 

b. Number of activities in the program, including the program supersource and supersink. 
 

2
1

0 ?? ?
?

P

i
pJJ  

 

c. Number of modes of project p, activity i. 
 

? ?? ?maxmin , pppi MMrndroundM ? , Pp ,...,3,2,1?  

 

d. Program/Project Release Dates. 
 

? ?? ?maxmin , ppp rndround ??? ? , Pp ,...,2,1,0?  
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e. Program/Project Due Date Factors.  These are used later, in Step 3, to determine actual 
program and project due dates. 

 

? ?? ?maxmin , ppp rndround ??? ? , Pp ,...,2,1,0?  

 

f. Activity/mode durations.  These are generated using the following algorithm, where D is a 
set of random integers and Dk is the kth element of D. 

 

Activity Duration Algorithm 

 

1. for p = 1, 2, 3, ..., P 

2. for i = 1, 2, 3, ..., Jp 

3. k := 1 

4. while piMk ?  do 

begin 

5. Dk := ? ?? ?maxmin , pp ddrndround  

6. k := k + 1 

end 

7. m := 1 

8. while piMm ?  do 

begin 

9. d* := min(D) 

10. k* := k such that *k
D = d* 

11. dpim := d* 

12. D := D\? ?   *k
D    

13. m := m + 1 

end 



 4-9

Step 3 - Network Generation.  The objective of this step is to construct a connected, acyclic, 

non-redundant network with the user-specified complexity measure(s). Before proceeding with a 

description of how the network is constructed, each characteristic of the network is explained. 

Generalized Precedence Relationships 

In the traditional activity-on-node representation of project scheduling problems, network 

nodes represent activities and directed network arcs (from the end of one activity to the beginning 

of another) represent finish-start precedence relationships.  When precedence relationships are 

generated such that activity i precedes activity j only if i < j, the project network is acyclic.  

Generalized precedence relationships (minimum and maximum time lags between the start times of 

two activities), however, have typically been treated in the literature using backward arcs (e.g., 

from activity j to activity i), resulting in cyclic project networks (Schwindt, 1995, 1996; Drexl et 

al., 1997; Salewski et al., 1997).  Using this treatment, generalized precedence relationships are 

created by generating cyclic project networks. 

Since cyclic project networks can be intuitively confusing, PAGER uses a simplified approach 

to create generalized precedence relationships.  Graphically, a generalized precedence is 

represented by a forward arc from the beginning of one activity to the beginning of another as in 

Figure 4-2.  Generalized precedences are created by converting traditional finish-start precedence 

relationships.  Recall that traditional finish-start precedence relationships are a special case of 

generalized precedences where the minimum time lag equals the duration of the predecessor 

activity and the maximum time lag is infinite.  Generalized precedences are, therefore, created by 

re-specifying the minimum and maximum time lags for a subset of the existing precedence 

relations. 

PAGER allows the user to specify a lower and upper bound for the minimum time lag and a 

lower and upper bound for the maximum time lag.  Minimum and maximum time lags may be 

negative.  For instance, if the minimum and maximum time lags from activity i to activity j are -3 

and 5, respectively, and activity i starts at time t, then activity j may start anywhere in the interval 

[t-3, t+5].  If the minimum and maximum time lags are both negative, the relationship is still valid 

provided that the minimum time lag is less than or equal to the maximum time lag. 
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Standard Precedence Generalized Precedence  

Figure 4-2. Standard and Generalized Precedence Arcs 

In the definitions which follow, arc set A is assumed to consist of standard precedences only.  

This assumption can be made without loss of generality since, as stated above, generalized 

precedences are treated as standard precedences with re-specified time lags. 

Connected Network 

The problem network must be connected. 

Definition 4-1. Network Connectivity (Kolisch et al., 1992: 5) 

Let G = (N, A) be a directed graph with node set N and arc set A.  G is connected if, for 

every node Nj ? , there is a directed path in G from the single source node to j and a 

directed path in G from j to the single sink node. 

Definition 4-2. Reachability (Schwindt, 1996: 7) 

A node Nj ?  is called reachable from node i if : 

(i) j = i, or 

(ii) there is a directed path Wij with origin i and terminus j. 

Definition 4-3. Reachability Matrix of a Digraph (Schwindt, 1996: 7) 

The reachability matrix R of digraph G = (N, A) is the nn ?  matrix ? ?
Njiijr

?,
 with 

?
?
??

otherwise ,0
 from reachable is  if ,1 ij

rij . 
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Definition 4-4. Network Connectivity (Alternate Definition) 

Let G = (N, A) be a directed graph with reachability matrix R, source node s, and sink 

node t.  G is connected if, for every Nj ? , rsj = 1 and rjt = 1. 

Acyclic Network 

The network must be acyclic. 

Definition 4-5. Strongly/Weakly Connected (Schwindt, 1996: 8) 

Let G = (N, A) be a directed graph with reachability matrix R.  Nodes i, Nj ? , ji ? , are 

strongly connected if j is reachable from i (rij = 1) and i is reachable from j (rji = 1).  

Nodes i and j are weakly connected if they are not strongly connected but are connected in 

the corresponding undirected graph (rij + rji = 1) 

Definition 4-6. Cyclic/Acyclic Network 

Let G = (N, A) be a directed graph.  G is cyclic if there exists any two nodes i, Nj ? , 

ji ? , such that i and j are strongly connected.  Otherwise, G is acyclic. 

Non-Redundant Network 

The network will be non-redundant.  Though redundancy within the network does not 

invalidate the network, it does adversely affect the coefficient of network complexity (CNC).  If the 

CNC (the average number of arcs per node) is used in determining the structure of the problem 

network, then redundant arcs cause an overstatement of the CNC and a network structure with 

fewer real temporal relationships than believed.  Practically speaking, redundant arcs may also 

increase the number of temporal relationships which must be considered when scheduling the 

resultant problem. 

Definition 4-7. Redundant Arc (Schwindt, 1996: 9) 

Let G = (N, A) be an acyclic digraph.  An arc (i, j) is redundant if there exists a directed 

path Wij in G – (i,j) with more than one arc. 
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Remark 1.  (Schwindt, 1996: 9) 

Arc (i, j) is redundant if and only if 1?ijr for )}),{(\,(* jiANG ? with reachability 

matrix *R . 

Definition 4-8. Non-Redundant Network 

Let G = (N, A) be an acyclic digraph.  G is a non-redundant network if there are no 

redundant arcs in G. 

Relationships Between Projects 

Just as activities within or between projects may be temporally related, projects themselves 

may also be temporally related.  Specifically, the source node of one project is, to some degree, 

related to the (numerically) preceding project.  The degree of this relationship is referred to as the 

project lag. 

The project lag is determined using the project lag coefficient, Lp, which can take any 

continuous value in the range of [0, 1].  Consider three cases, represented in Figure 4-3. 

a. Lp = 0.  The start of project p+1 is not dependent on project p.  Hence, the source node of 
project p+1 is a successor of the program super-source node only.  In Figure 4-3, the 
project lag coefficient between projects 1 and 2 is zero. 

 

b. Lp = 1.  Project p+1 succeeds project p.  This is the case where one project, p, must be 
entirely completed before another project, p+1, begins.  This might happen if the projects 
are sequential stages in a process where the end of one project and beginning of the next 
represents a milestone in the process.  The source node of project p+1 is a successor of the 
sink node of project p.  Projects 3 and 4 in Figure 4-3 have a project lag coefficient of one. 

 

c. )1 ,0(?pL .  The start of project p+1 is dependent on the successful completion of some 

phase of project p, say activity j of project p.  Activity j of project p may, for instance, be 
the final approval of some critical technology needed for project p+1.  In Figure 4-3, 
projects 2 and 3 demonstrate a project lag coefficient greater than zero but less than one. 
The source node of project p+1 is a successor of activity j of project p. 

 

The project lag coefficient is randomly generated using the following equation: 

 

? ?maxmin , ppp LLrndL ? , 
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where min
pL  and max

pL  are the user-specified minimum and maximum values of Lp, respectively.  

Once the project lag coefficient for project p has been generated, the activity in project p which will 

precede the source node of project p+1 is determined by: 

? ?)1(1 ??? pp JLroundj  

 s  t

Project 1

 s  t

Project 2

 s  t

Project 3

 s  t

Project 4

 S  T

 j

 
 

Figure 4-3. Project Lags 

Network Complexity 

Elmaghraby and Herroelen (1980) state that some measure of complexity in the project 

network is required to (1) serve as a predictor of the processing time requirements for a particular 

software package on a particular hardware platform and (2) enable proper comparisons between 

competing algorithms.  Three different measures of network complexity are used in the problem 

generators discussed above: the coefficient of network complexity, the complexity index, and 

Thesen's restrictiveness measure. 

Demeulemeester et al. (1993) and Kolisch et al. (1992, 1995) use the coefficient of network 

complexity (CNC) as their measure of network complexity.  CNC, the ratio of arcs to nodes in the 
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network, is easily implemented in a problem generator, but it has shortcomings.  The measure is 

not normalized to the interval [0, 1] and so does not reflect network complexity relative to the 

number of network nodes.  A CNC of 3, for example, has different implications for a network with 

100 nodes than it does for a network with only 10 nodes.  In the 100-node network, each node 

immediately precedes only 3% of the network nodes, on average.  In the 10-node network, 

however, each node immediately precedes 30% of the network nodes, on average, which is far more 

constrained than the 100-node network.  To alleviate this problem, some authors have used the 

order strength (e.g., Cooper, 1976) which is calculated by dividing the number of arcs by the 

maximum number of possible arcs, n(n-1)/2.  As Kolisch et al. (1992, 1995) suggest, though, the 

maximum number of possible arcs includes redundant arcs and is far greater than a realistic 

number of precedence relationships in a project network. 

De Reyck and Herroelen (1996) study the impact of CNC on problem solution time compared 

to a second measure, the complexity index (CI).  CI, a measure of how near a network is to being 

series-parallel, is defined as the number of node reductions (in concert with series and parallel 

reductions) required to reduce a project network to a two-terminal network (see Valdes et al., 

1982; Bein et al., 1992).  De Reyck and Herroelen conclude that CNC is a poor indicator of 

problem difficulty and propose that CI is a superior measure.  Agrawal et al. (1996) make the 

same conclusion and use CI in their problem generator, DAGEN.  One drawback of using CI is 

that it requires the use of an activity-on-arc representation of the project network as opposed to the 

activity-on-node representation.  

A third measure of network complexity is Thesen's measure of restrictiveness (RT) (Thesen, 

1977).  RT measures the degree to which the number of possible activity sequences has been 

restricted by the imposition of precedence constraints.  Schwindt (1995, 1996), who uses RT in his 

ProGen/max generator, perceives RT as a more intuitive measure than CI and conjectures that it 

will play an even more important role than CI in predicting computational effort for resource-

constrained project scheduling problems.  De Reyck (1995) conducted an extensive computational 

study and confirmed Schwindt's conjecture.  Drexl et al. (1997) also use RT as the measure of 

complexity in their ProGen/? x generator. 

While problem generators have typically relied on a single measure of network complexity, 

PAGER provides two measures, CNC and RT.  These can be used separately or simultaneously.  

RT is the primary complexity measure used by PAGER because of its increasing acceptance as the 
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best available measure, as well as its intuitive appeal.  CNC is also provided as an option for three 

reasons.  It provides the user the ability to generate problem sets comparable to other problem sets 

cited in the literature.  It provides means to investigate the power of RT and CNC, used together, to 

explain the solution time of problem instances.  It may, perhaps, open the door for future research 

in using simultaneous measures of network complexity. 

Definition 4-9. Restrictiveness of a Graph (Thesen, 1977: 197) 

Let G = (N, A) be an acyclic digraph with unique source node 1, unique sink node n = |N|, 

and reachability matrix R.  Let ?  denote the number of possible permutations of the 

sequence ? ?221 ,...,, ?niii  of ? ? NnN ??? 2,...,1'  such that if 0??? kjrkj .  Then, 

the restrictiveness of G is defined as 
maxlog

log1P
?
??? , where )!2(max ??? n . 

Remark 2.  (Thesen, 1977: 197) 

]1 ,0[P ? , P = 0 for parallel digraphs, and P = 1 for series digraphs. 

 

While P may be an appropriate measure of network complexity, finding ?  is a difficult 

combinatorial problem (Schwindt, 1995).  Consequently, Thesen developed and tested over 40 

different indirect estimators of P and found RT to yield the lowest mean relative error with respect 

to P.   

Definition 4-10. Disjunctive Arc (Schwindt, 1996: 18) 

Let G = (N, A) be an acyclic digraph with reachability matrix R.  Disjunctive arcs are 

imaginary, undirected arcs between pairs of nodes Nji ?,  such that 

 rij = rji = 0.  
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Definition 4-11. Restrictiveness Estimator RT (Schwindt, 1996: 18) 

Let G = (N, A) be an acyclic digraph with unique source node 1, unique sink node n = |N|, 

and reachability matrix R.  Let nd denote the number of disjunctive arcs in G and let 

2
)3)(2(max ??? nnnd  be the maximum number of possible disjunctive arcs in a weakly 

connected digraph with node set N.  Then, the restrictiveness estimator RT is defined as  

)3)(2(

)1(62

)3)(2(

2)1(
11RT ,,

max ??

??
?

??

??
????

??
??

nn

nr

nn

rnn

n
n Nji

ij
Nji

ij

d

d . 

 

Schwindt (1996) provides Theorem 4-1 (stated here without proof) describing the behavior of 

RT. 

Theorem 4-1. (Schwindt, 1996: 19) 

(i) ]1 ,0[RT ? . 

(ii) RT = 0 for parallel digraphs. 

(iii) RT = 1 for series digraphs. 

(iv) The insertion of a non-redundant arc increases RT. 

(v) The insertion of a redundant arc does not affect RT. 

 

One of the unique features of PAGER is the role the reachability matrix R plays in generating 

the problem network.  While the exact procedure is reserved for the next subsection, the underlying 

theory is developed here. 

Recall that problem generators ProGen/max and ProGen/? x use RT as the measure of network 

complexity.  Both of these generators use the same procedure as ProGen for creating an acyclic, 

connected network.  Generally, they  

1. determine the number of start and end nodes, connecting these to the source and sink 
nodes, respectively, 
 

2. determine a direct predecessor for each node which does not already have one, 
 

3. determine a direct successor for each node which does not already have one, then 
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4. add additional non-redundant arcs until the desired complexity is achieved. 
 

This ProGen-based procedure is simple to implement and is very useful when CNC is the 

measure of network complexity.  CNC is easily controlled through this procedure since arcs are 

added one by one, increasing CNC by exactly 1/n, and the procedure is simply terminated when the 

desired CNC is reached. 

When RT is incorporated into the above procedure, arcs are added until RT has been met or 

exceeded.  Unfortunately, the procedure lacks direct control over RT.  Unlike CNC, the addition of 

an arc does not, in general, increase RT by any predetermined amount.  The effect of an arc 

addition on RT must be determined after the fact.  Consider the following example. 

Figure 4-4(a) depicts a network with CNC = 12/10 = 1.2 and RT = 13/28 ? 0.464.  If an arc 

is added from node 2 to node 5, Figure 4-4(b), the CNC increases by 1/10 to 1.3 and the RT 

increases by 1/28 to 0.5.  If, on the other hand, with the addition of an arc from node 3 to node 4, 

Figure 4-4(c), the CNC still increases by 1/10 to 1.3, but the RT jumps by 5/28 to 0.643.  If the 

desired RT is somewhere in the open interval between 0.5 and 0.643, it is unclear how the RT will 

be achieved without a trial-and-error process of adding and removing arcs.  Schwindt (1995, 1996) 

adds arcs until the desired RT is met or exceeded and then stops.  As demonstrated above, the 

resulting RT may be materially beyond what the user intended. 

PAGER's approach to generating problem networks is to work in the domain of the 

reachability matrix R.  If R can be manipulated directly and a corresponding network produced, 

then RT can be precisely controlled.  The development of a project network using reachability 

matrix R requires Definitions 4-12 through 4-15 and Theorems 4-2 and 4-3.  Unless otherwise 

noted, these definitions and theorems are original to this research. 

Definition 4-12. Restricted Reachability Matrix  

Let G = (N, A) be an acyclic digraph with reachability matrix R.  Then, the restricted 

reachability matrix R  is the nn ?  matrix ? ?
Njiijr ?, 

 with 

?
?
? ?

?
otherwise ,0

 , from reachable is  if ,1 jiij
rij . 

That is, IRR ?? , where i is the nn ?  identity matrix. 
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 (b) (c) 

Figure 4-4. CNC versus RT 

Definition 4-13. Adjacency Matrix (Schwindt, 1996: 6) 

Let G = (N, A) be an acyclic digraph.  The adjacency matrix A of G is the nn ?  matrix 

? ?
Njiija

?, 
 with 

?
?
? ?

?
otherwise ,0

),( , precedes  if ,1 Ajiji
aij .  

 



 4-19

Theorem 4-2. R  Uniquely Determines A 

  

Theorem: Let G = (N, A) be an acyclic, non-redundant digraph with adjacency matrix A 

and restricted reachability matrix R .  R  uniquely determines the adjacency 

matrix A as follows: ? ?2RRA ??? , where ?  operates on the elements of a 

matrix X such that 
?
?
? ?

?
otherwise ,0

1 if ,1
)( ij

ij

x
x? . 

Proof: Let G = (N, A) be an acyclic, non-redundant digraph with adjacency matrix A 

and restricted reachability matrix R .  Assume, without loss of generality, that 

nodes are labeled such that if 1?ijr , then i < j.  Show that ? ?2
ijijij rra ???  

for each node pair Nji ?, . 

 Three cases exist for any node pair Nji ?, : (1) ji ? , (2) ji ?  and aij = 1, 

or (3) ji ?  and aij = 0.  Consider each case separately. 

 Case 1.  ji ?  

   0??? ijrji by assumption and  00 ??? ijij ar .  Then, 

0

00

2

?

????

??

?

??
??

?

????

????

?

jik
ik

ijk
kj

jik
kjik

ijk
kjik

Nk
kjikij

rr

rrrr

rrr

 

 and so ? ? 02 ?ijr? .  Therefore, ? ? 0000 2 ?????? ijijij rra ? . 

  Case 2. ji ?  and aij = 1 

  11 ??? ijij ra .  That is, ?? Aji ),( j is reachable from i.  Then, 
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?
???
???

?

??

????

????

?

?

?????

???

?

jki
kjik

jk
ik

jki
kjik

ik
kj

jk
kjik

jki
kjik

ik
kjik

Nk
kjikij

rr

rrrr

rrrrrr

rrr

00

2

 

  Now, 12 ?? ?
?? jki

kjikij rrr  if and only if there exists some k, i < k < j, such that 

1?kjik rr .  Assume such a k exists.  Then, there exists a directed path, Wij, 

from i to j in G with more than one arc.  This is a contradiction, however, 

since G is non-redundant and 1?ija .  Thus, 02 ?ijr  and ? ? 02 ?ijr? .  

Therefore, ? ? 1011 2 ?????? ijijij rra ? . 

  Case 3. ji ?  and aij = 0 

  Since 0?ija , two possibilities exist: (a) i does not reach j (rij = 0) and (b) i 

reaches j (rij = 1).  Consider both possibilities. 

  (a)  i does not reach j (rij = 0).  Then, 

?
???
???

?

??

????

????

?

?

?????

???

?

jki
kjik

jk
ik

jki
kjik

ik
kj

jk
kjik

jki
kjik

ik
kjik

Nk
kjikij

rr

rrrr

rrrrrr

rrr

00

2

 

  Now, 12 ?? ?
?? jki

kjikij rrr  if and only if there exists some k, i < k < j, such that 

1?kjik rr .  Assume such a k exists.  Then, there exists a directed path, Wij, 

from i to j in G with more than one arc.  This is a contradiction, however, 
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since i does not reach j.  Thus, 02 ?ijr  and ? ? 02 ?ijr? .  Therefore, 

? ? 0000 2 ?????? ijijij rra ? . 

  (b)  i reaches j (rij = 1).  Then, 

?
???
???

?

??

????

????

?

?

?????

???

?

jki
kjik

jk
ik

jki
kjik

ik
kj

jk
kjik

jki
kjik

ik
kjik

Nk
kjikij

rr

rrrr

rrrrrr

rrr

00

2

 

  Now, 12 ?? ?
?? jki

kjikij rrr  if and only if there exists some k, i < k < j, such that 

1?kjik rr , or in other words, there exists a directed path, Wij, from i to j in G 

with more than one arc.  Since i does reach j, 12 ?ijr  and ? ? 12 ?ijr? .  

Therefore, ? ? 0110 2 ?????? ijijij rra ? . 

 QED 

  

 

Remark 3. 

? ?
? ?
? ?
? ?
? ??

?
?

?
?
?

?

??
??
??
???

???

0 and 1 if ,1  
1 and 1 if ,0  
0 and 0 if ,0   
1 and 0 if ,1

2

2

2

2

2

ijij

ijij

ijij

ijij

ijijij

rr
rr
rr
rr

rra

?
?
?
?

? , for Nji ?, . 

Definition 4-14.   r-Deletion 

Let R  be a restricted reachability matrix.  The r-deletion of node pair (l, m), Nml ?, , is 

the change from 1?lmr  to 0?lmr  in R .  
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Definition 4-15.   Feasible r-Deletion 

Let 1R  be a restricted reachability matrix.  Let 2R  be 1R  after the r-deletion of some 

node pair (l, m), Nml ?, .  The r-deletion of node pair (l, m) is feasible if 

? ?2
222 RRA ???  remains a proper adjacency matrix (that is, ? ? ij 2A  = {0, 1} for all 

Nji ?, ). 

 

Theorem 4-3. r-deletion Feasibility 

  

Theorem: Let 1R  be a restricted reachability matrix with corresponding adjacency 

matrix A1.  Let 2R  be 1R  after the r-deletion of some node pair (l, m), 

Nml ?, .  The r-deletion of node pair (l, m) is feasible if and only if 

? ? 1 1 ?lmA .  

Proof: Let 1R  be a restricted reachability matrix with corresponding adjacency 

matrix A1.  Let (l, m) be some node pair, Nml ?, , such that ? ? lm 1R  = 1.  

Let 2R  be the resulting matrix when ? ? lm 1R  is changed from 1 to 0.  The 

proof demonstrates (i) the r-deletion of (l, m) is feasible if ? ? 1 1 ?lmA  and (ii) 

the r-deletion of (l, m) is NOT feasible if ? ? 0 1 ?lmA . 

  (i) Show that ? ? ??   1 1 lmA  the r-deletion of (l, m) is feasible. 

  Assume ? ? 1 1 ?lmA .  The r-deletion of (l, m) ?  ? ? 0 2 ?lmR . 

  When li ?  and mj ? , ? ? ? ? ijij  1 2 RR ? , 

? ? ? ? ? ? ? ? ? ? ? ?ij
Nk

kjik
Nk

kjikij  
2
1 

2
1 

2
1 

2
2 

2
2 

2
2 RRRRRR ??

??
??? ,  and 
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? ? ? ? ? ?? ? ? ? ? ?? ? ? ?ijijijijijij  1 
2
1 1 

2
2 2 2 ARRRRA ????? ?? .  This implies that 

? ? ? ? ijij  1 2 AA ?  remains feasible for li ?  and mj ? . 

  Now consider when i = l and mj ? . 

? ? ? ?ljlj  1 2 RR ?  and 

? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ?

? ?lj

Nk
kjlk

mk
kjlkmjlm

mk
kjlk

mk
kjlk

mk
kjlk

mk
kjlkmjlm

mk
kjlk

Nk
kjlklj

 
2
1

 
2
1 

2
1

 
2
1 

2
1 

2
1 

2
1 

2
1 

2
1

 
2
2 

2
2 

2
2 

2
2

 
2
2 

2
2 

2
2 

2
2 

2
2 

2
2

 
2
2 

2
2 

2
2

0

R

RR

RRRRRR

RRRR

RRRRRR

RRR

?

?

???

???

???

?

?
??

??
??

?

?

??

??

??

?

 

  Therefore, ? ? ? ? ? ?? ? ? ? ? ?? ? ? ?ijijljljljlj  1 
2
1 1 

2
2 2 2 ARRRRA ????? ?? .  If 

? ? 0 1 ?ijA , then ? ? ? ?1 0 2 ,?ijA  (see Remark 3) and if ? ? 1 1 ?ijA , then 

? ? 1 2 ?ijA .  This implies that ? ? ? ? ijij  1 2 AA ?  remains feasible for li ?  and 

mj ? . 

  Consider next when li ?  and mj ? .  The same argument used for the case 

when li ?  and mj ?  holds here. 

  Finally, consider when li ?  and mj ? . 

? ? 1 1 ?lmR ,  ? ? 0 2 ?lmR  and 
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? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ?

? ?lm

Nk
kmlk

mmlmlmll
mlk

kmlk

mlk
kjlk

mlk
kjlk

mmlmlmll
mlk

kmlk

Nk
kmlklm

 
2
1

 
2
1 

2
1

 
2
1 

2
1 

2
1 

2
1 

2
1 

2
1

 
2
1 

2
1
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2
2

 
2
2 

2
2 

2
2 

2
2 

2
2 

2
2

 
2
2 

2
2 

2
2

1010

0000

R

RR

RRRRRR

RR

RR

RRRRRR

RRR

?

?

???

?????

?????

???

?

?
?
?
?
?
?

?

?

?

?

?

?

,

,
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  Since ? ? ? ? ? ?? ? 1 
2
1 1 1 ??? lmlmlm RRA ?  and ? ? 1 1 ?lmR , 

? ?? ? ? ?? ? 0    0  
2
2 

2
1 ??? lmlm RR ?? .  Therefore, 

? ? ? ? ? ?? ? 000 
2
2 2 2 ????? lmlmlm RRA ?  which, of course, is feasible and 

expected.  

  (ii) Show that ? ? ??   0 1 lmA  the r-deletion of (l, m) is NOT feasible. 

  Assume ? ? 0 1 ?lmA .  The r-deletion of (l, m) ?  ? ? 0 2 ?lmR .   

  Consider ? ? ? ? ? ?? ? ? ?? ? ? ?? ?lmlmlmlmlm  
2
2 

2
2 

2
2 2 2 0 RRRRA ??? ?????? . 

  As shown above, ? ?? ? ? ?? ? ? ? ? ? 101 1 1 
2
1 

2
2 ?????? lmlmlmlm ARRR ??  which 

implies that ? ? ? ?? ? 1 
2
2 2 ???? lmlm RA ?  which is not feasible. 

 QED 

   

Network Generation Procedure 

With the above definitions and theorems, it is now possible to construct a project network with 

precise control over RT.  This is done by starting with a restricted reachability matrix R  where 
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1?ijr  for all Nji ?, , i < j, calculating ? ?2RRA ??? , randomly choosing a node pair (l, m), 

nml ???1 , such that 1?lma , and r-deleting node pair (l, m).  This procedure, depicted in 

Figure 4-5, is repeated until the desired RT and CNC are obtained.  Note that r-deletion is limited 

to (l, m) where nml ??  ,1 .  This is done because network connectivity is maintained, by 

definition, when 11 ?jr  for all j = 2,..., n and 1?inr  for all i = 1,..., n-1.  

Table 4-3 lists the input parameters required for generation of a project network.  The use of 

these parameters is detailed below. 

Table 4-3. Input Parameters for Project Network Generation 

Parameter Definition Bounds 

max
1

min
1 / pp SS  minimum/maximum number of start activities in project p [1, 99] 

maxmin / pJpJ PP  minimum/maximum number of finish activities in project p [1, 99] 

max
pS  max number of successors per activity for project p [1, 99] 

max
pP  max number of predecessors per activity for project p [1, 99] 

LFp fraction of arcs in project p which denote generalized prec [0.0, 1.0] 

maxmin / pp LLLL  lower/upper bounds on the minimum lag times for project p [-99, 99] 

maxmin / pp LULU  lower/upper bounds on the maximum lag times for project p [-99, 99] 

CNCp coeff. of network complexity (arcs per node) for project p [0, 999] 

tolCNC tolerance on coefficient of network complexity [0.0, 1.0] 

THp Thesen Restrictiveness measure for project p [0.0, 1.0] 

tolTH tolerance on Thesen Restrictiveness [0.0, 1.0] 
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Tries = Tries + 1

r-reduce random
node pair (l, m).

Update A.

Stop

CNC in
bounds?

Yes

Stop
Tries <

MaxTries?

No

RT too
high?

RT too
low?

No

Yes

No

Network
feasible?

Yes

Save Network

No

Given Constant:
 MaxTries

Calculate RT and CNC

Initialize R
Calculate A

Tries = 1

Yes

SUCCESS!

Yes

No

FAILURE!

 

Figure 4-5. Generation of a Project Network 

Figure 4-6 illustrates the project network generation procedure.  The lighter gray cells of 

matrix R  correspond to entries of R  which cannot be changed.  The darker gray cells are those 

which can be changed to generate a project network of some desired RT.  If the desired RT is 0.39, 

the illustrated example yields an acyclic, non-redundant, connected digraph (network) with RT = 

0.39. 
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 R  2R  A 

Initialization
RT = 1
Series Graph

 

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1
7 1 1 1
8 1 1
9 1

10  

1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8
2 1 2 3 4 5 6 7
3 1 2 3 4 5 6
4 1 2 3 4 5
5 1 2 3 4
6 1 2 3
7 1 2
8 1
9

10  

1 2 3 4 5 6 7 8 9 10
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10  

Iteration 1
r-delete (5, 6)
RT =  0.96

 

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1
8 1 1
9 1

10  

1 2 3 4 5 6 7 8 9 10
1 1 2 3 3 5 6 7 8
2 1 2 2 4 5 6 7
3 1 1 3 4 5 6
4 2 3 4 5
5 1 2 3
6 1 2 3
7 1 2
8 1
9

10  

1 2 3 4 5 6 7 8 9 10
1 1
2 1
3 1
4 1 1
5 1
6 1
7 1
8 1
9 1

10  

Iteration 2
r-delete (7, 8)
RT = 0.93

 

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1
8 1 1
9 1

10  

1 2 3 4 5 6 7 8 9 10
1 1 2 3 3 5 5 7 8
2 1 2 2 4 4 6 7
3 1 1 3 3 5 6
4 2 2 4 5
5 2 3
6 2 3
7 1
8 1
9

10  

1 2 3 4 5 6 7 8 9 10
1 1
2 1
3 1
4 1 1
5 1 1
6 1 1
7 1
8 1
9 1

10  

and finally,  

Iteration 17
r-delete (2, 9)
RT = 0.39

 

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1 1 1
5 1 1
6 1 1
7 1 1
8 1
9 1

10  

1 2 3 4 5 6 7 8 9 10
1 1 2 1 5 2 8
2 1 2
3 1 2
4 1 1 4
5 1
6 1
7 1
8
9

10  

1 2 3 4 5 6 7 8 9 10
1 1 1 1
2 1
3 1
4 1 1
5 1
6 1
7 1
8 1
9 1

10  

This yields the following project network: 

1 3

4

2

6

7

5

9

8

10

 

Figure 4-6. Generating a Project Network 

Note that at the initialization phase of the network generation procedure when RT = 1, the 

network reflected in adjacency matrix A is precisely a series network.  If the procedure continues 

until RT = 0, the resulting matrices (Figure 4-7) produce a parallel graph. 
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 R  2R  A 

Iteration 28
RT = 0
Parallel Graph

 

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10  

1 2 3 4 5 6 7 8 9 10
1 8
2
3
4
5
6
7
8
9

10  

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10  

Figure 4-7. Generating a Parallel Project Network 

During the generation of a project network, there are a few other feasibility rules which must 

be observed.  The user has previously set lower and upper bounds for the number of start nodes 

and the number of end nodes, as well as upper bounds for the number of predecessors and 

successors a node may have (see Table 4-3).  Additionally, to preserve the ordering of nodes, the 

start nodes must begin with node 2 and be consecutively numbered.  The end nodes must, also, be 

consecutively numbered and end with node n-1.  Therefore, once an arc is r-deleted, a check is 

made to assure that the above feasibility conditions are satisfied.  If they are not, the arc is re-

inserted and a new arc chosen for r-deletion.  If a feasible network cannot be found within a limited 

number of trials, the program is halted with an error.  The inability to generate a network within 

the limited number of trials is likely attributable to inconsistent user-defined parameters.  For 

instance, there may be no feasible network for which the specified RT and CNC values can be 

simultaneously met.  The user may then reset the specifications and start over. 

To construct a problem with multiple projects, a separate network is generated for each project 

and then inter-project relationships are introduced.  The first inter-project relationships to be 

introduced are the previously described inter-project lags.  The addition of inter-project lags yields 

a multi-project program with a unique network for each project plus arcs to tie the projects to each 

other and to the super-source and super-sink nodes.  The next step is to add additional arcs to 

achieve the user-specified values for the program-level RT and CNC. 

The procedure for adding program-level arcs is similar to that used for generating project 

networks with two exceptions.  First, inter-project arcs may not only pass from some project p1 to 

another project p2, but may also pass from project p2 to project p1.  To allow arcs to originate in 

any project and terminate in any other project, it is possible to initialize the program-level 

reachability matrix, 0R , by arranging the reachability matrices, pR , from each project p in block 
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angular form.  The intersections of these blocks correspond to the reachability of nodes in one 

project from nodes in another project.  Figure 4-8 illustrates what 0R  might look like for a 

program with three projects and a program-level RT of 0.5.  The white blocks correspond to the 

project reachability matrices while the gray blocks are their intersections.  Unfortunately, there is 

no easy way to control the program-level RT with this arrangement.  The intersections between 

project blocks could be initialized with zero entries and then ones added until the desired RT is 

achieved.  This equates, however, to the problem experienced with single projects where feasible 

additions to the reachability matrix must correspond to arcs in the adjacency matrix.  There is little 

control over RT this way. 

 0R  A0 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 1 1
7 1
8 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1
13 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1
17 1 1
18 1 1
19 1
20  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1
2 1
3 1 1 1 1 1
4 1 1
5 1 1
6 1
7 1
8 1 1
9 1 1 1 1

10 1 1
11 1 1 1
12 1
13 1
14 1
15 1 1 1
16 1 1
17 1
18 1
19 1
20   

Figure 4-8. Example of Multi-Project Program 

An alternate way is to initialize the intersections between project blocks with ones and then r-

delete node pairs corresponding to arcs in the adjacency matrix.  The downside to this method, 

though, is that the initial reachability matrix (Figure 4-9) is overspecified (i.e., it has an RT = 2.0) 

and the adjacency matrix is infeasible ( i.e., it has non-zero/one entries).  Randomly selected node 

pairs would then need to be r-deleted until A0 is feasible and then additional node pairs r-deleted 

until the desired RT is obtained.  The problem, again, is that if RT is large (close to one), it may be 

difficult to bring A0 into feasibility before the actual RT descends below the desired RT. 
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 0R  A0 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1
20  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1
2 -1
3 -1 -1
4 -1 -1 -1 -1
5 -1 -1 -1 -1
6 -1 -1 -1 -1 -1
7 -1 -1 -1 -1 -1 -1
8 -1
9 -1 -1 -1

10 -1 -1 -1
11 -1 -1 -1 -1 -1
12 -1 -1 -1 -1 -1
13 -1 -1 -1 -1 -1 -1
14 -1
15 -1 -1
16 -1 -1 -1 -1
17 -1 -1 -1 -1 -1
18 -1 -1 -1 -1 -1
19 -1 -1 -1 -1 -1 -1
20  

Figure 4-9. Initializing 0R  with Ones 

To overcome the problem of generating the program-level network structure, recall that a 

multiple-project program can be viewed as a single super-project.  Like any project, the nodes of a 

super-project can be numbered in a way such that if node i precedes node j, then i < j.  With this in 

mind, the procedure used by PAGER is to randomly intermix and renumber the nodes of the 

projects such that nodes from the same project retain their relative ordering within the super-project 

and such that the predetermined inter-project lags retain their relative ordering within the super-

project.  A reachability matrix identical to the ones used for the projects can then be constructed 

(Figure 4-10) and node pairs r-deleted until the desired program-level RT is obtained. 

 0R  A0 

1 8 14 2 9 10 15 3 4 5 16 11 17 6 18 19 12 7 13 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1

6 1 1 1 1 1 1
18 1 1 1 1 1
19 1 1 1 1
12 1 1 1

7 1 1
13 1
20  

1 8 14 2 9 10 15 3 4 5 16 11 17 6 18 19 12 7 13 20
1 1
8 1

14 1
2 1
9 1

10 1
15 1
3 1
4 1
5 1

16 1
11 1
17 1
6 1

18 1
19 1
12 1
7 1

13 1
20  

Figure 4-10. Initializing 0R  with Mixed Project Nodes 

The second exception which makes program-level network generation different from project-

level network generation is that the current project networks and inter-project lags must be 
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maintained.  Maintenance of the current structures is assured through the MASK matrix.  The 

MASK matrix is, in essence, the reachability matrix corresponding to the current network 

structures when viewed as a super-project.  The MASK matrix is obtained by finding the shortest 

path from every super-project node to every other super-project node.  If the shortest path from one 

node to another is finite, then the latter node is reachable from the former and the MASK matrix 

receives a unit entry corresponding to that node pair.  When randomly selecting a node pair to r-

delete, not only must the node pair correspond to an arc in the adjacency matrix, but the node pair 

must also have a zero entry in the MASK matrix.   

As with the project networks, node pairs are r-deleted until the program-level RT and CNC are 

obtained.  It is possible for there to exist inconsistencies in the user-defined specifications (Table 

4-4).  In particular, the inter-project lags and RT may be inconsistent.  If the user, for example, has 

specified a lag of one between each project, the resultant program-level RT will be one.  If the user 

has specified an RT less than one, the r-deletion of node pairs will terminate before the desired RT 

is obtained.  In this case, the program will save the current network with a warning that the 

specified RT could not be satisfied.  (That is, the algorithm is programmed so inter-projects lags 

take priority over the RT.) 

Table 4-4. Input Parameters for Inter-Project Network Generation 

Parameter Definition Bounds 

maxmin / pp LL  min/max lag between projects p and p+1, p = 1, 2, 3, ..., P-1 [0.0, 1.0] 

max
0S  maximum inter-project successors per activity [1, 99] 

max
0P  maximum inter-project predecessors per activity [1, 99] 

LF0 fraction of inter-project arcs which denote generalized prec [0.0, 1.0] 

max
0

min
0 / LLLL  lower/upper bounds on the minimum inter-project lag times [-99, 99] 

max
0

min
0 / LULU  lower/upper bounds on the maximum inter-project lag times [-99, 99] 

CNC0 program-level coeff. of network complexity (arcs per node) [0, 999] 

TH0 program-level Thesen Restrictiveness measure [0.0, 1.0] 

 

Once the project networks and the program-level network have been generated, a fraction of 

the project-level and program-level arcs are randomly chosen to be converted into generalized 
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precedence relationships.  The user has already specified (through the specification file) the 

fraction of project-level and program-level arcs which will be converted.  The randomly chosen 

subset of arcs are added to the LAG matrix and are given minimum and maximum lag times.  The 

minimum and maximum lag time, LL and LU, respectively, for each lag relationship are 

determined using the following equations: 

? ?? ?maxmin , pp LLLLrndroundLL ?  

? ?? ?maxmin , pp LULUrndroundLU ? . 

After the conversion of a subset of arcs to lag relationships is complete, the remaining arcs are 

added to the matrices of activity successors (SUCC) and predecessors (PRED).  If the lag 

conversion leaves an activity without a successor, an arc is added from the activity to the sink node 

of the respective project.  This assures that the activity must be completed before the project is 

completed.  Similarly, if an activity is left without a predecessor, an arc is added from the source 

node to the activity to assure that the activity does not start before the project does. 

Next, the program horizon is calculated.  This is done simply by adding the duration of the 

longest-duration mode of each activity.  The program horizon represents the minimum amount of 

time required to complete the program if resources are constrained to a point where only one 

activity can be scheduled at a time and in its longest-duration mode. 

Early and late start times of each activity are also calculated in the network portion of 

PAGER.  Early and late start times are calculated using the shortest-duration modes of each 

activity as explained in Chapter III.  The Generalized Critical Path Method (GCPM), introduced in 

Chapter III, is used to determine the early and late start times with modifications to account for 

generalized precedence.  The GCPM algorithm, as outlined in Chapter III, is repeated below. 

 

Generalized Critical Path Method (GCPM) 

1. Set the early start time of each activity equal to the release date of the project of which it is 
a member. 

 
2. For each activity i, in numerical order, change its early start time to the greatest of the 

following: 
 

a. its current early start time, 
b. the early start time plus duration of each of its standard predecessors, and 
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c. the early start time of activity j plus minimum time lag between activity j and activity 
i, for each activity j which is a generalized predecessor of activity i. 

 
3. If the early start time of any activity changed at Step 2, repeat Step 2.  
 
4. For each activity i, in numerical order, check each activity for which activity i is a 

generalized predecessor.  If the early start time of any generalized successor of activity i is 
greater than the early start time of activity i plus the maximum time lag, change the early 
start time of activity i to the greatest of the early start time minus maximum time lag of 
each generalized successor of activity i.   

 
5. If the early start time of any activity changed at Step 4, repeat Step 2.  If not, the early 

start time of each activity has been found. 
 
6. Set the late start time of each activity equal to the program horizon minus its duration.  
 
7. For each activity i, in reverse numerical order, change its late start time to the least of the 

following: 
 

a. its current late start time, 
b. the late start time of each of its standard successors minus the duration of activity i, 
c. the late start time of each activity generalized successor of activity i minus its 

minimum time lag from activity i. 
 
8. If the late start time of any activity changed at Step 7, repeat Step 7.  
 
9. For each activity i, in reverse numerical order, check each activity which is a generalized 

predecessor of activity i.  If the late start time of activity i is greater than the late start time 
of any generalized predecessor plus its maximum lag time, change the late start time of 
activity i to the least of the late start times plus maximum time lag of each generalized 
predecessor of activity i.   

 
10. If the late start time of any activity changed at Step 9, repeat Step 7.  If not, the late start 

time of each activity has been found. 
 

While the GCPM is, in principle, fairly straightforward, implementation of the algorithm is 

considerably more complex.  To understand the implementation, consider, first, Definitions 4-16 

and 4-17. 

As an example, suppose that Activities 2 and 3 (in some project) have a generalized precedence 

relationship and that Activities 3 and 5 (in the same project) also have a generalized precedence 

relationship. Using the PAGER convention, the lower numbered activity is said to be the 

generalized predecessor and the higher numbered activity is said to be the generalized successor.  

Thus, Activity 2 has one generalized successor, Activity 3.  Activity 3 also has one generalized 
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successor, Activity 5.  If the set, Ni, contains the explicit generalized successors of activity i, then 

the problem statement would specify the following sets: N2 = {3} and N3 = {5}. 

Definition 4-16.   Explicit Generalized Precedence 

Explicit Generalized Precedence is used to describe a generalized precedence relationship 

explicitly specified in the problem statement.  The set, Ni, contains the explicit generalized 

successors of activity i. 

 

Definition 4-17. Implied Generalized Precedence 

Implied generalized precedence is used to describe a generalized precedence relationship 

which is either explicitly or not explicitly specified in the problem statement.  The set, *
iN , 

contains the implicit generalized successors of activity i. 

 

Continuing the example above, the problem statement explicitly specified N2 = {3} and N3 = 

{5}.  The PAGER convention specifying the higher numbered activity as the generalized successor 

of the lower numbered activity is used solely to avoid defining generalized precedence relationships 

twice in the problem statement.  It should be recognized, though, that if Activity 3 is a generalized 

successor of Activity 2, then Activity 2 is also a generalized successor of Activity 3.  Of course, 

the minimal and maximal time lags are different, but they, too, are related.  The following 

relationships hold for any two activities (i and j) with a generalized precedence relationship: 
*      ji NiNj ???  

maxmin
ijji ????  

minmax
ijji ????  

In the case of Activities 2 and 3, suppose 2min
23 ??  and 5max

23 ?? .  That is, if Activity 2 starts 

at time t, then Activity 3 must start in the interval [t+2, t+5].  This is equivalent, though, to saying 

that if Activity 3 starts at time s, then Activity 2 must start in the interval [s-5, s-2].  In other 

words, 5min
32 ???  and 2max

32 ??? .  Therefore, while the problem statement (using the PAGER 

convention) would explicitly specify that N2 = {3}, it is implied that *
32 N? . 
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Though the discussion of explicit and implicit generalized precedences may appear academic, 

it is important to the GCPM to identify all generalized precedence relationships.  To account for 

the unspecified relationships, set *
iN  is defined as the union of Ni (the explicit generalized 

precedence relationships of activity i) and the implicit generalized precedence relationships of 

activity i.  It has been discussed that if N2 = {3}, then *
32 N? .  It also holds that if N3 = {5}, then 

*
53 N? .  Somewhat less obvious is that there is also a generalized precedence relationship between 

activities 2 and 5, where *
52 N?  and *

25 N? .  Once all of the relationships have been identified, 

the following sets are defined: ? ?5 32 ,* ?N , ? ?5 23 ,* ?N , and ? ?3 25 ,* ?N .  The first task of the 

GCPM is to define all of the implicit generalized precedence sets. 

  

Notation for Generalized Critical Path Method 

Activity Sets: 

 AE = the set of activities which are eligible for labeling and have no generalized precedence 

relationship 

 AL = the set of activities which are eligible for labeling and have a generalized precedence 

relationship 

 AS = the set of activities which have been labeled 

 A1 = a set of activities where each activity is a generalized predecessor of every other 

activity in the set 

 Oi = the set of activities which precede activity i 

 Si = the set of activities which succeed activity i 

 Ni = the set of explicit generalized successors of activity i 

 *
iN  = the set of implicit generalized successors of activity i 

Time-Related Parameters: 

 ?  = the program release date 

 D = the program planning horizon 

 ei = the early start time of activity p(i) 

  li = the late start time of activity p(i)  

 imd  = the duration of activity i in mode m 
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 min
ij?  = the minimal start-start lag time between activities i and j 

 max
ij?  = the maximal start-start lag time between activities i and j 

  

Generalized Critical Path Method 

Step 1 Set i = 0. 

Step 2 Set i = i + 1.  If Ji ? , go to Step 6.  [For each activity i = 1 to J, do the following...] 

Step 3 If ??iN , go to Step 2.  [If activity i has no explicit generalized successors, proceed 

to the next activity.] 

Step 4 Let ii NN ?* .  Set j = 1.  [Activity i has at least one explicit generalized successor.] 

Step 5 Let ? ? ? ?iNNN
jiNii \*

** ? , where ? ? jiN*  is the j-th element of set *
iN .  Set 

? ? ? ?
minminmin

kNNiik
jiji

** ?????  and ? ? ? ?
maxminmax

kNNiik
jiji

** ?????  for each ? ? jiNk *? .  Set j = j + 

1.  If ? ? ??jiN* , go to Step 2.  Otherwise, repeat Step 5. 

Step 6 Set the early start time, ei, of each activity equal to the project release date, ? .  That 

is, 
?
?
?

??
?

?
0 if1
0 if

1

1

i

i
i d

d
e

?
?

, for i = 1, 2, 3, … , J. 

Step 7 Let AS  = ? , AE = {1}, and AL  = ? . 

Step 8 Select the lowest indexed activity, say activity i, where 

? ?*
i

LLE NjAjAAi ????   , .  
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Step 9 For each activity ? ? *
iNij ? , set the early start time of activity j to the greater of its 

current early start time and the early start time plus duration of each of its 

predecessors.  That is, 

? ? ? ?

? ? ? ?
?
?
?

?

?
?
?

?

?

?
??

?
?
?

??

?
?
?

??

?
??

?
?
?

??

?
?
?

??

?

?
?

?
?

?
?

?
?

0 ifmax,1max,max

0 if1max,max,max

1

0

1

0

1

0

1

0

11

11

jk

d
Ok

kk

d
Ok

j

jk

d
Okkk

d
Okj

j

dedee

dedee

e

k

j

k

j

k

j

k

j

. 

Step 10 If EAi ? , let ? ?iAA SS ? , ? ?? ? ? ?????? *,,\ j
S

ji
EE NAOSjjiAA , and 

? ?????? j
S

ji
LL NAOSjjAA ,, .  If ? ? ??LE AA , go to Step 8. 

Step 11 Given ? ?*
i

LL NjAjAi ????   , , set ? ? *
iNiA ?1 . 

Step 12 For each 1Ai ? , in turn, set 

? ? ? ?

? ? ? ?
?
?
?

?

??
?

?

?

?
??

?
?
?

??

?
?
?

?????

?
??

?
?
?

??

?
?
?

?????

?

?
?

?
?

?
?

?
?

0 ifmax1maxmax

0 if1maxmaxmax

1
max

0

max

0

1
max

0

max

0

11

11

iijj

d
Nj

ijj

d
Nj

i

iijj

d
Nj

ijj

d
Nj

i

i

deee

deee

e

j
i

j
i

j
i

j
i

**

**

,,

,,

 and 

? ? ? ?
? ? ? ??

?
?

??
?

?

?
??
?

??
? ?????

?
??
?

??
? ?????

?

??

??

0 ifmax,1max,max

0 if1max,max,max

1
min

0

min

0

1
min

0

min

0

11

11

jijidijidj

jiji
d

iji
d

j

j
deee

deee
e

ii

ii , *
iNj ?? . 

Step 13 Let 1AAA SS ? , ? ??????? *,, j
S

ji
EE NAOAiSjjAA 1for  , and 

? ? ? ??????? j
S

ji
LL NAOAiSjjAAA ,,\ 11 for  .  If ? ? ??LE AA , go to 

Step 8. 

Step 14 Renumber activities from earliest start time to latest start time (break ties by index). 
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Step 15 Set the late start time, li, of each activity equal to one time unit more that the project 

horizon, D, less its duration.  That is, 
?
?
?

?
???

?
0 if
0 if1

1

11

i

ii
i dD

ddD
l , for i = 1, 2, 3, … , J. 

Step 16 Let AS  = ? , AE = {J}, and AL  = ? . 

Step 17 Select the highest indexed activity, say activity i, where 

? ?*
i

LLE NjAjAAi ????   , .  

Step 18 For each activity ? ? *
iNij ? , set the late start time of activity j to the lesser of its 

current late start time and the late start time of each of its successors less the duration 

of activity j.  That is, 

? ? ? ?

? ? ? ?
?
?
?

?

?
?
?

?

?

?
??

?
?
?

??

?
?
?

?

?
??

?
?
?

??

?
?
?

???

?

?
?

?
?

?
?

?
?

0 ifmin,1min,min

0 if1min,min,min

1

00

11

0

1

0

11

11
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d
Skk

d
Skj

jjk

d
Skjk

d
Skj

j

dlll

ddldll

l

k

j

k

j

k

j

k

j

. 

Step 19 If EAi ? , let ? ?iAA SS ? , ? ?? ? ? ?????? *,,\ j
S

ji
EE NASOjjiAA , and 

? ?????? j
S

ji
LL NASOjjAA ,, .  If ? ? ??LE AA , go to Step 17. 

Step 20 Given ? ?*
i

LL NjAjAi ????   , , set ? ? *
iNiA ?1 . 

Step 21 For each 1Ai ? , in turn, set 

? ? ? ?

? ? ? ?
?
?
?

?

??
?

?

?

?
??

?
?
?

??

?
?
?

?????

?
??

?
?
?

??

?
?
?
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?

?
?

?
?

?
?
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1
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0
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 and 

? ? ? ?
? ? ? ????

??
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?
??
?

??
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?

??
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0 ifmin,1min,min
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Step 22 Let 1AAA SS ? , ? ??????? *,, j
S

ji
EE NASAiOjjAA 1for  , and 

? ? ? ??????? j
S

ji
LL NASAiOjjAAA ,,\ 11 for  .  If ? ? ??LE AA , go to 

Step 17. 

  

 

Steps 1 through 5 determine all of the implicit generalized precedence relationships of each 

activity.  As the algorithm labels activities, it does so by labeling activities without any generalized 

precedence relationships one at a time (as in traditional CPM), and by labeling activities with 

generalized precedence relationships as a set.  The algorithm, therefore, collects the activities with 

generalized precedence relationships and holds them until all such related activities are eligible for 

labeling based on having all of their predecessors labeled.  When these sets of activities are labeled, 

all of the interrelationships must be known; hence, Steps 1 to 5. 

The rules for scheduling zero-duration activities differ slightly from those with positive 

duration.  If the predecessor of a zero-duration activity finishes at time t0, then the earliest the zero-

duration activity may start is t0 rather than t0 + 1.  The relationship of these activities may be seen 

in Figure 4-11, where the precedence relationships of activities i through i+3 are shown and where 

activities i+1 and i+2 have zero duration. 

i+1i i+2 i+3
 

 

Activ ity Duration

i 4

i +1 0

i +2 0

i +3 3  

Figure 4-11. Precedence-Feasible Early Start Times of Zero-Duration Activities 

 

Steps 6 through 13 perform the early start time labeling.  Each activity is first labeled to start 

at the project release date (Step 6), then adjusted to start as soon as all of its predecessors have 

finished (Step 9).  For activities with no generalized precedence relationships, Step 10 updates the 
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activity sets and labeling recommences with the next eligible activity in Step 8.  For activities with 

generalized precedence relationships, Step 11 forms the set of all activities which are, in essence, 

being labeled simultaneously.  In Step 12, the early start time of each activity i is delayed (if 

necessary) to assure that none of the maximum lags associated with that activity will be violated, 

and then all other activities in the set are delayed (if necessary) to assure that none of the minimum 

lags associated with activity i are violated.  Step 13, then, updates the activity sets and labeling 

recommences at Step 8. 

Once early start times have been determined, Step 14 renumbers the activities from earliest 

start time to latest start time. 

Steps 15 through 22 determine the late start times of each activity by essentially reversing the 

early start time labeling process.  Late start times are bound by the project horizon, in the same 

way early start times are bound by the project release date.  With both early and late start times 

determined, the feasible start time windows of each activity are known. 

Finally, program and project due dates are calculated using the due date factors found during 

basic data generation and the following equation: 

? ?? ?pJpJppJp ESLSESroundDD ??? *? , p = 0, 1, 2, ..., P 

where DD0 is the program due date. 

Step 4 - Resource Data Generation.  The generation of data for regular renewable and 

nonrenewable resources is nearly identical to that detailed by Kolisch et al. (1992, 1995) for 

ProGen.  The primary difference is that in multiple-project problems, ProGen generates only 

program-level resources (i.e., project-specific resources are not considered).  The procedure 

employed by PAGER generates project-level and program-level resources using the input data 

listed in Table 4-5. 

 The generation of resource data begins by identifying the number of renewable and 

nonrenewable resources for each project and for the program using the following equation: 

? ?? ?maxmin ,
ppp

rndround ??? ? , p = 0, 1, 2, ..., P-1, 

where p = 0 refers to the program-level data. 

The demand for resources is generated next by identifying which resources are demanded by 

each activity-node combination and how much of those resources is demanded.  This procedure, 
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which uses parameters maxmin / ?? pp QQ , ?pRF , maxmin / ?? pp rr , )1(P ?Fp? , )2(P ?Fp? , and RF? , is 

identical to ProGen's (see Kolisch et al., 1992 & 1995). 

Resource availability is the last resource data to be generated.  For regularly available 

resources, the procedure used in ProGen is employed where a minimal demand, min
pqK , and a 

maximal demand, max
pqK , are calculated for each resource q in project p.  The availability of 

resource q in project p is a convex combination of the minimal and maximal demands with the 

resource strength as a scaling parameter.  The resource strength is drawn from the uniform 

distribution ? ?maxmin , ?? pp RSRS  and the resultant resource availability is: 

? ?? ?minmaxmin
pqpqppqpq KKRSKroundK ??? ?  

Table 4-5. Input Parameters for Resource Data Generation 

Parameter Definition Bounds 

maxmin /
pp

??  min/max number of resources of type ?  for project p [0, 10] 

maxmin / ?? pp QQ  min/max number of resources of type ?  requested per job in 

project p 

[0, 99] 

?pRF  resource factor of resource type ?  for project p [0.0, 1.0] 

maxmin / ?? pp rr  min/max resource demand for resource type ?  for project p [0, 99] 

maxmin / ?? pp RSRS  min/max resource strength for resource type ?  for project p [0.0, 1.0] 

maxmin / ?? pp ERSERS  min/max expediting resource strength for resource type ?  for 

project p 

[0.0, 1.0] 

)1(P ?Fp?  prob. of duration-constant demands for resource type ?  for 

project p 

[0.0, 1.0] 

)2(P ?Fp?  prob. of duration-nonincreasing demands for resource type ?  

for project p 

[0.0, 1.0] 

RF?  resource factor tolerance [0.0, 1.0] 

 

For program-level resources, p = 0 
For project-level resources, p = 1, 2, ..., P-1 
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Evaluation of the minimal and maximal demands is as follows, noting that R
pimqr  and N

pimqr  are 

the respective renewable and nonrenewable resource requirements for resource q when activity i of 

project p is executed in mode m.  For nonrenewable resources, then 
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and the maximal demand is the peak demand of the precedence and lag preserving the earliest start 

schedule.  With each activity i executed in its lowest indexed mode employing maximal per-period 

demand, that is, where ? ?R
pimq

M

mpiq rr
pi

1

* max
?

?  and ? ?*

1

* min piq
R
pimqpi

M

mpiq rrmm
pi

??
?

, the resource-dependent 

early start schedule is calculated with corresponding earliest start times, q
piES , and completion 

times, q
piCT .  The peak per-period demand is then: 
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Note that when the resource strength is zero, there is just enough resource to complete the 

program in the program horizon.  When the resource strength is one, there is enough resource to 

complete the program in its unconstrained CPM time. 

To calculate the availability of expediting resources, the same minimal and maximal demands 

are used.  However, the sum of resource strengths for regular and expediting resources should not 

exceed one, so that expediting resource availability is calculated as: 

? ?? ?minmax
pqpqppq KKERSroundEK ?? ? . 

Total resource availability is then 
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The costs associated with expediting resources are generated in the next step. 

Step 5 - Cost Data Generation.  There are three types of cost data generated depending on the 

desired objective function: program/project completion penalties, mode costs, and expediting 

resource costs.  The input data required to generate this data is listed in Table 4-6. 

If the objective function of the program scheduling problem includes the minimization of 

program and project completion costs, program and project completion penalties are assessed 

starting at one period past their respective due dates.  That is, there is no penalty if the 

program/project ends on or before its due date.  If the program/project is one period late, the 

program/project penalty base value is assessed.  For each additional period that the 

program/project is late, the penalty is increased by the penalty increment. 

The program-level base penalty, 00PEN , and penalty increment, 01PEN , are specified by the 

user in the specification file.  All other costs are related to the program penalty base value and 

increment.  For instance, the completion penalty base value of a project p, 0pPEN , is a fraction of 

the program penalty base value and is generated using the following equation: 

? ?? ?min
0

min
0000 ,* ppp PENPENrndPENroundPEN ? , 

while the penalty increment, 1pPEN , is a fraction of the program penalty increment and is 

generated using the following equation: 

? ?? ?min
1

min
1011 ,* ppp PENPENrndPENroundPEN ? . 

The importance of completing project p is, therefore, tied directly to the importance of 

completing the program.  If the project's penalty increment is half of the program's penalty 

increment, then a one period delay in the completion of the project is half as costly as a one day 

delay in the completion of the program. 

Similarly, the costs of activity modes and start times and of expediting resources are tied to the 

program completion penalty base value and increment.  This provides the user a way to easily 

reflect the relative cost of scheduling decisions to the cost of other decisions. 
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A final note is that the cost of activities can be time-increasing, time-constant, or time-

decreasing.  Permitting activity costs to change over time allows the user to design problems with 

positive and negative cash flows.  Again, activity costs have a base value related to the program 

penalty base value and a per-period increment (positive or negative) related to the program penalty 

increment. 

 

Table 4-6. Input Parameters for Cost Data Generation 

Parameter Definition Bounds 

00PEN  program base penalty [0, 9999] 

01PEN  program penalty increment [0, 9999] 

max
0

min
0 / pp PENPEN  min/max project base penalty *, p = 1, 2,..., P [0.0, 99.0] 

max
1

min
1 / pp PENPEN  min/max project penalty increment **, p = 1, 2,..., P [0.0, 99.0] 

max
0

min
0 / pp MCMC  min/max base mode cost *, p = 1, 2,..., P [0.0, 99.0] 

max
1

min
1 / pp MCMC  min/max mode cost increment **, p = 1, 2,..., P [0.0, 99.0] 

? ?1GP ?p  probability of time-increasing activity costs, p = 1, 2,..., P [0.0, 1.0] 

? ?2GP ?p  probability of time-decreasing activity costs, p = 1, 2,..., P [0.0, 1.0] 

maxmin / pp ERCERC  min/max expediting renewable resource base cost *,  

p = 0, 1,..., P 

[0.0, 99.0] 

maxmin / pp ENCENC  min/max expediting nonrenewable resource base cost*,  

p = 0,..., P 

[0.0, 99.0] 

 

* denotes that these values are fractions of the program base penalty cost 
** denotes that these values are fractions of the program base penalty increment 

Step 6 - Problem Output.  Once a problem instance has been generated, it may be output in 

PAGER, ProGen, or MPS formats.  The PAGER and MPS formats can reflect all of the features 

that PAGER is designed to produce.  The ProGen format, on the other hand, is not designed to 

reflect generalized precedence relationships, expediting resources, or mode costs, and so ProGen 
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format is unavailable if any of these features are invoked.  A sample PAGER output file is 

included as Appendix C. 

PAGER Implementation 

PAGER is programmed in FORTRAN 77 with a number of FORTRAN 90 extensions.  It has 

been implemented on an IBM-compatible computer with a Pentium 750 MHz processor and 256 

MB of RAM, running Windows NT.  This machine was used to generate the test problems used in 

Chapters V and VI.  Figures 4-12 through 4-13 report the distribution of times required to generate 

a total of 10,521 test problems.  Problems ranged in size from single projects with 5 activities to 

four-project programs with 50 total activities.  Overall, PAGER required an average of 0.95 

seconds to generate a problem, with a minimum generation time under 0.01 seconds, a maximum 

time of 155.67 seconds, and a variance of 19.90 seconds. 

Figure 4-12 is a Box and Whiskers plot of problem generation times.  The whiskers show the 

minimum and maximum generation times, while the box shows the mean plus / minus two standard 

deviations.  Generation times are shown according to the number of activities in the problem.  

Since the maximum generation time for problems with 50 activities is large compared to other 

problem sizes, the box and whiskers for smaller problem sizes are difficult to see.  Therefore, the 

Box and Whiskers plot is repeated in Figure 4-13 with the 50-activity problems removed and the 

y-axis time scale decreased. 

Problems with 10 activities and with 50 activities both have an outlier.  One problem with 10 

activities required 8.43 seconds, compared to the next longest generation time of 1.11 seconds.  

One problem with 50 activities took 155.67 seconds, compared to the next longest generation time 

of 68.51 seconds. 
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Figure 4-12.   Distribution of Generation Times (5 to 50 Activities) 
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Figure 4-13.   Distribution of Generation Times (5 to 42 Activities) 
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Distribution of Generation Times by Number of Jobs
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Figure 4-14. Distribution of Generation Times by Number of Jobs 

Figure 4-14 presents the generation time data by time bin.  The bars on the chart represent the 

number of problems generated within the bounds of the respective time bin.  Different shaded bars 

are used to differentiate problems of different sizes (i.e., number of activities).  The vast majority 

of problems (95%) required no more than one second of generation time. 

 

Summary and Conclusions 

Table 4-7 summarizes the key features of PAGER and the other generators discussed above.  

All of the generators can generate single-project, single-mode problems with renewable resources.  

Differences between the generators include their multi-project capabilities, the types of resources 

generated, the measures of network complexity used, and the measures of resource availability 

used.  All of the generators output problems in their own specific format.  In addition, some 

generators are capable of output in formats used in other test sets (Patterson and ProGen) or, in the 

case of PAGER, in MPS format. 

PAGER is the first problem generator to directly exploit the reachability matrix of a network 

to generate problem networks with precisely controlled values of RT.  It is also the first to 
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simultaneously use two measures of network complexity, RT and CNC, in the network generation 

process.  PAGER fills the need to generate multi-project problems with project-specific networks 

and resources, interrelationships between projects, and program-level network structure and 

resources. 
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Table 4-7. Key Features of Problem Generators 

 DDH ProGen ..../max ..../ x?  DAGEN PAGER 
Multi-Project Problems  x  x  x 
   w/Program-Level Resources  x  x  x 
   w/Project-Specific Resources      x 
   w/Time-Related Projects      x 
   w/Unique Project Networks      x 
       
Multiple Modes  x x x  x 
Minimum Time Lags   x x  x 
Maximum Time Lags   x   x 
Changeover Times    x   
Mode and Set of Mode Identity    x   
Forbidden Periods    x   
       
Mode Costs (Time-Constant)    x  x 
Time-Increasing/-Decreasing      x 
Expediting Resource Costs      x 
       
Network Complexity Measures:       
  Coefficient of Network Complexity  x    x 
  Thesen’s Restrictiveness   x x  x 
  Direct Use of Thesen Restrictiveness      x 
  Complexity Index     x  
  Choice of Measures      x 
  Simultaneous Measures      x 
       
Renewable Resources x x x x x x 
Nonrenewable Resources  x x x x x 
Partially-Renewable Resources    x   
Expediting Resources      x 
       
Resource Availability Measures:       
  Resource Factor  x x x  x 
  Resource Strength  x x x  x 
  Parameter(s) Randomly Drawn   x   x 
       
Output:       
  Patterson Format   x    
  ProGen Format  x x   x 
  PAGER Format      x 
  MPS Format      x 
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V.  Single Project Scheduling 

Overview 

This chapter presents an algorithm for solving the Multi-Modal, Resource-Constrained Project 

Scheduling Problem with Generalized Precedence and Expediting Resources (MRCPSP-

GPR/EXP).  The MRCPSP-GPR/EXP is the single-project, special case of the Multi-Modal, 

Resource-Constrained, Multi-Project Scheduling Problem with Generalized Precedence and 

Expediting Resources (MRCMPSP-GPR/EXP).  While Chapter III highlighted the nature of the 

multi-project MRCMPSP-GPR/EXP, the ability to solve either single-project or multi-project 

problems is entirely dependent on the availability of an algorithm for solving single-project 

problems.  More specifically, every instance of the MRCMPSP-GPR/EXP falls into one of the 

following three categories: 

1. The problem is a true single-project MRCPSP-GPR/EXP.  That is, an instance which 
represents a real-world problem which is a single project. 

2. The problem is a multi-project MRCMPSP-GPR/EXP which is treated and scheduled as a 
single super project. 

3. The problem is a subproblem of a larger multi-project instance of the MRCMPSP-
GPR/EXP.  While a multi-project program may be scheduled as a super project as in 
Category 2 above, it may also be scheduled using the decomposition approach presented in 
the next chapter.  When scheduled using the decomposition approach, the decomposed 
subproblems must still be solved - as single-project instances. 

In any of the preceding categories, solution of the problem starts with the scheduling of a single 

project. 

With the goal of developing an appropriate solver for the single-project MRCPSP-GPR/EXP, 

this chapter begins with a discussion of solution approaches from the literature and how they relate 

to this particular problem.  Specifically, approaches used for related problems are reviewed for 

their applicability to the MRCPSP-GPR/EXP, keeping in mind the unique characteristics of the 

MRCPSP-GPR/EXP, as well as its intended uses. 

An approach for solving the MRCPSP-GPR/EXP is then presented, beginning with the 

development of a basic algorithm and then adding on additional bounding rules designed to increase 

the speed of the basic algorithm and, consequently, the size of problems which can be solved.  

Testing of the algorithm is reported, followed by a chapter summary.  To aid the reader in 
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following the notation used in this chapter and other chapters, refer to Appendix A for a complete 

listing of symbols, variables, and parameters.  

Approaches from the Literature 

The single-project MRCPSP-GPR/EXP shares many characteristics with other scheduling 

problems discussed in the literature.  Most obvious are the finish-start precedence relationships 

between activities and the dependence of activity completion time and resource use on the activity 

completion mode.  Other characteristics are less common – some of which preclude use of some of 

the proven solution techniques in the literature.  The desire to use the solution algorithm in the 

decomposition methodology presented in the next chapter also puts constraints on the approach 

used to solve the MRCPSP-GPR/EXP.  In light of these characteristics and constraints, solution 

approaches from the literature have been evaluated for their applicability to the MRCPSP-

GPR/EXP.  The intent is to identify proven approaches which may form the basis of an approach 

for the MRCPSP-GPR/EXP. 

Implicit Enumeration by Branch-and-Bound.  Among the approaches found in the literature for 

solving project-scheduling problems, the most efficient are branch-and-bound enumeration 

algorithms.  These algorithms reduce the enumeration tree by searching among active schedules 

only.  These algorithms have been presented by Stinson et al. (1978), Christofides (1987), and 

Demeulemeester and Herroelen (1992) for the Resource-Constrained Project Scheduling Problem 

(RCPSP); by Patterson et al. (1989, 1990), Sprecher (1994), Sprecher and Drexl (1996a, 1998), 

Sprecher et al. (1997), and Hartmann and Drexl (1998) for the Multi-Modal, Resource-

Constrained Project Scheduling Problem (MRCPSP); by Demeulemeester and Herroelen (1997) 

for the Generalized, Multi-Modal, Resource-Constrained Project Scheduling Problem 

(GMRCPSP); by De Reyck and Herroelen (1998a, 1998b) and Herroelen et al. (1998) for the 

Multi-Modal, Resource-Constrained Project Scheduling Problem with Generalized Precedence 

(MRCPSP-GPR); and by Van Hove (1998) for the Generalized, Multi-Modal, Resource-

Constrained Multi-Project Scheduling Problem (GMRCMPSP).  Understanding the efficiency of 

these algorithms requires some discussion of active scheduling. 

Consider, first, Definitions 5-1 through 5-8, provided by Sprecher et al. (1995). 
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Definition 5-1. Schedule (Sprecher et al., 1995: 97) 

Consider a project with J activities.  Let sj and mj be the respective start time and execution 

mode of activity j.  A schedule, S = (s, m), is a combination of J-tuples, s = (s1,… , sJ) and 

m = (m1, … , mJ), which provide the start time and execution mode of each activity j, j = 1, 

… , J. 

Definition 5-2. Feasible Schedule (Sprecher et al., 1995: 97) 

A schedule S is called feasible if the precedence relations are maintained and the resource 

constraints are met. 

Definition 5-3. Left Shift (Sprecher et al., 1995: 97) 

A left shift of an activity j, j = 1, … , J, is an operation on a feasible schedule S, which 

derives a feasible schedule S?, such that jj ss ?? and ii ss ?? , for i, i = 1, … , J, ji ? . 

In words, left shifting an activity consists of moving the start time of an activity to an earlier 

time without moving the start time of any other activity and while maintaining feasibility. 

Definition 5-4. One-Period Left Shift (Sprecher et al., 1995: 97) 

A left shift of an activity j, j = 1, … , J, is called a one-period left shift if 1??? jj ss . 

Definition 5-5. Local Left Shift (Sprecher et al., 1995: 97) 

A local left shift of an activity j, j = 1, … , J, is a left shift of activity j which is obtainable 

by one or more successively applied one-period left shifts of activity j. 

Sprecher (1994: 97) notes that within a local left shift, each intermediate derived schedule has 

to be feasible, by definition. 

Definition 5-6. Global Left Shift (Sprecher et al., 1995: 97) 

A global left shift of an activity j, j = 1, … , J, is a left shift of activity j which is not 

obtainable by a local left shift.  
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Definition 5-7. Semi-Active Schedule (Sprecher et al., 1995: 97) 

A semi-active schedule is a feasible schedule where none of the activities j, j = 1, … , J, 

can be locally left shifted. 

Definition 5-8. Active Schedule (Sprecher et al., 1995: 98) 

An active schedule is a feasible schedule where none of the activities j, j = 1, … , J, can be 

locally or globally left shifted. 

The efficiency of algorithms which search over active schedules only hinges on the concept 

that, under appropriate conditions, a project must have an active schedule which is optimal 

(Sprecher, 1994).  The necessary conditions for this to be true are (1) the project schedule is 

feasible and (2) the project schedule’s objective function is a regular measure of performance.  The 

feasibility of the project schedule is an obvious condition.  However, the regular measure of 

performance condition requires further explanation. 

Definition 5-9.  Regular Measure of Performance 

Consider a scheduling problem with the objective to minimize some measure of schedule 

fitness, ? .  Let S = (s, m) be a feasible schedule for the problem and let ? (s, m) represent 

the fitness of schedule S.  ?  is a regular measure of performance if ? (s, m) < ? (s’, m) 

implies that jj ss ??  for at least one j, j = 1, … , J. 

Definition 5-10.   Non-Regular Measure of Performance 

Consider a scheduling problem with the objective to minimize some measure of schedule 

fitness, ? .  ? ?is a non-regular measure of performance if it is not a regular measure of 

performance. 

In simple terms, a regular measure of performance is one where a decrease in the objective 

function value implies that at least one activity starts earlier in the improved schedule than it does 

in the competing schedule.  The objective of minimizing the project makespan (see Chapter II, 

Equation (10)) is an example of a regular measure of performance (Sprecher, 1994).  Kolisch and 

Padman (1998: 3) explain that a regular measure of performance is one where “we can compare 



 5-5

two schedules for a given problem which differ only in the finish time of one activity and we can 

state that the schedule which has the smaller finish time for this activity is at least as good as the 

other schedule, i.e., the former dominates the latter.”  Consequently, left-shifting the start time of 

any activity never results in a worse objective value function. 

The preceding discussion of active schedules and regular measures of performance is important 

because of their positive impact on the execution time of so many approaches in the literature.  

Unfortunately, the MRCPSP-GPR/EXP cannot exploit the concept of active schedules for two key 

reasons. 

First, the objective function of the MRCPSP-GPR/EXP (Chapter III, Equation (20)) is a non-

regular measure of performance (Kolisch and Frase, 1996: 139).  This is a consequence of the 

availability of expediting resources and the corresponding objective of minimizing project costs, 

including the cost of expediting resources.  Consider a project, P, with no expediting resources and 

an objective function to minimize makespan.  Since P has an objective function which is a regular 

measure of performance, it follows that P has an active schedule, S, which is optimal.  By 

definition, it is impossible to left shift any activity in S, while maintaining precedence and resource 

feasibility.  Suppose, however, that there is some activity j which could be left shifted while 

maintaining precedence feasibility, but which would result in a resource conflict.  If expediting 

resources (at no cost) were now made available which would permit the left shifting of activity j, 

then the current schedule, S, is no longer an active schedule.  Assuming that left shifting activity j 

alone would result in an active schedule (i.e., addition of the expediting resources did not impact 

the ability of other activities, including the terminal activity, to be left shifted), then the new 

schedule, S?, would have the same value as the previous schedule, S.  However, if there is a 

positive cost associated with the expediting resources which made S? feasible and the objective 

function is expanded to include the cost of expediting resources, then S? is, in fact, dominated by 

S.  Furthermore, since it was the addition of expediting resources alone that enabled activity j to 

shift left to form active schedule S?, schedule S, a non-active schedule, remains optimal even for 

the expanded objective function.  Hence, the inclusion of expediting resources makes an objective 

function a non-regular measure of performance and it is no longer sufficient to search only the 

active schedules to find an optimal.  This result is confirmed by Kolisch and Frase (1996: 139). 

Second, the decomposition approach described in Chapter III, for solving the multi-project 

MRCMPSP-GRP/EXP, requires the generation of the k-best solutions of single-projects.  Even in 
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the absence of expediting resources (which would make the objective function a regular measure of 

performance), it is still necessary to enumerate over the non-active schedules.  The reason lies in 

the interdependence of the projects at the program level where projects are temporally related and 

must also compete for common renewable resources.  Suppose that a project P has two schedules 

of equal value:  S1, an active schedule, and S2, a non-active schedule.  This is entirely possible 

whether the objective function is a regular or non-regular measure of performance.  If project P 

must now adjudicate the start times of its activities and its resource requirements with other 

projects at the program-level, project P is indifferent to the two schedules, S1 and S2, provided 

there is no program-level cost associated with the two schedules.  However, it is possible that 

schedule S2, the non-active schedule, is feasible as to the program-level temporal relationships and 

resource availabilities, while S1, the active schedule, is not.  Therefore, in the development of the 

set of k-best solutions to the single-project problem, all schedules, active and non-active, must be 

evaluated.  This evaluation leads not only to the enumeration of possibly all of the optimal 

solutions, but also to the enumeration of equal-valued, suboptimal solutions. 

It should be noted that Van Hove (1998) develops a similar decomposition approach for the 

multi-project GMRCMPSP, but one where only active schedules are considered.  Because the 

GMRCMPSP does not include expediting resources, its objective function is a regular measure of 

performance.  From the previous discussion, however, one might suspect that Van Hove’s 

subproblem solver would still need to enumerate non-active schedules.  Enumerating non-active 

schedules is unnecessary, though, because Van Hove assumes that projects are temporally 

independent.  Therefore, Van Hove enumerates the k-best active schedules of a project, all of which 

are, by assumption, temporally and renewable-resource feasible at the program level.  The question 

that remains in Van Hove’s approach is which of the k-best active schedules adjudicates best with 

the other projects for nonrenewable resources.  Van Hove demonstrates the utility of this approach 

for the development of Air Tasking Orders (ATOs) in the wartime campaign planning process.  

The approach, however, is inadequate for the nature of the MRCPSP-GPR/EXP. 

Having eliminated the active-schedule enumeration schemes, there are still two approaches to 

evaluate for their applicability to the MRCPSP-GPR/EXP:  zero-one programming and an implicit 

enumeration scheme by Talbot (1982). 

Zero-One Programming.  Some of the earliest attempts to solve the RCPSP were based in 

zero-one programming.  These attempts differed not so much in the procedure used to solve the 
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zero-one program, but in the way the zero-one program was formulated (e.g., Bowman, 1959; 

Pritsker et al., 1969).  Chapter III presents a complete zero-one formulation of the 

MRCPSP-GPR/EXP using the variable definitions proposed by Pritsker et al. (1969).  This 

formulation can be solved directly, without modification, by any general zero-one program solver. 

As discussed in Chapter II, zero-one programming attempts at solving the resource-constrained 

project scheduling problems have generally led to solution times which are orders of magnitude 

greater than those required by specialized algorithms.  This unfortunate reality is undoubtedly true 

for the more general MRCPSP-GPR/EXP.  Nonetheless, zero-one programming is still a valid 

approach and advances in zero-one programming have improved the efficiency of zero-one solvers.  

One of these key advances is the concept of Special Ordered Sets (SOS) of Variables.  As 

described in Chapter II, the exploitation of the SOS variables in the project scheduling problems 

significantly reduces the number of leaves in a search tree (corresponding to feasible solutions that 

must be explicitly or implicitly evaluated) and improves solution time.  Because of its applicability 

to the MRCPSP-GPR/EXP, zero-one programming is a candidate approach to be computationally 

compared to other applicable approaches. 

Implicit Enumeration by Activity Sequence.  Talbot (1982) presents an implicit enumeration 

scheme for the MRCPSP, where partial schedules in the enumeration scheme are extended based 

solely on a predetermined activity sequence, rather than on feasibility tests like the branch-and-

bound methods.  Though it lacks some of the elegance of the branch-and-bound methods, its 

simplicity provides a precise and straightforward way to assure that all schedules have been 

enumerated (implicitly or explicitly).  The approach also lends itself to being extended for 

generalized precedence and expediting resources.  Because of its flexibility to evolve for the 

characteristics of the MRCPSP-GPR/EXP and its ability to enumerate all schedules, Talbot’s 

algorithm provides the best starting point for developing an approach for the MRCPSP-GPR/EXP. 

Basic Algorithm 

The basic algorithm for the MRCPSP-GPR/EXP, hereafter referred to simply as the 

Scheduler, is an extension of the algorithm by Talbot (1982) for the MRCPSP.  For the MRCPSP-

GPR/EXP, the algorithm by Talbot must be extended to account for generalized precedence 

constraints and expediting resources.  Extension of the algorithm constitutes this section.  The next 

section presents a number of bounding rules designed to improve the efficiency of the Scheduler.  
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These rules are presented separately, rather than being incorporated directly into the basic 

algorithm, for two reasons.  (1) Treating the rules as options enables their contribution to solution 

time, singly and in combination, to be more readily assessed.  (2) If testing reveals that solution 

times are negatively impacted by any bounding rule, the rule may be easily eliminated from the 

solution algorithm.  Note that bounding rules may improve the solution time of problems with 

certain characteristics while increasing solution times for problems with other characteristics. 

The Scheduler is a depth-first implicit enumeration scheme which descends the branches of the 

search tree to find feasible improving solutions.  Each level, i, of the search tree represents a partial 

schedule where only i activities have been scheduled.  One activity is added to the schedule at each 

level.  Partial schedules are augmented until all activities are scheduled and a complete feasible 

solution is found.  Complete solutions are stored in a k x (J + 1) x 2 array, where k is the number 

of best solutions desired, and J is the number of activities in the problem.  For each activity, the 

solution array stores two values: (1) its execution mode and (2) its start time.  The objective 

function value is stored in Row 0 of the array.  The solution array is initialized with appropriately 

large values (e.g., 9999999). 

When the algorithm finds a feasible solution, the objective function value of the solution is 

compared to that of the k-th best solution in the solution array.  If the objective function value of 

the new solution is less than or equal to that of the k-th best solution, the new solution is added to 

the solution array and the ranking of the new solution is determined.  The solution in the k-th 

position in the solution array is dropped from the array. 

While solutions are added to the array of k-best solutions, a counter is incremented to record 

the number of solutions which have become part of the array.  In the event that there are fewer than 

k feasible solutions, the value of k is reset to the count of feasible solutions.  This assures that only 

feasible solutions are reported. 

Using a depth-first search allows the solution array to be filled with k solutions as quickly as 

possible.  These k solutions replace the artificially large values with which the solution array is 

initialized.  Since branches of the search tree may be fathomed if any feasible solution on that 

branch is dominated by the current k-th best solution, having the solution array filled with good 

solutions provides a tighter upper bound which allows earlier fathoming of branches. 

When scheduling a project, a scheduler may wish to present a decision-maker with a set of 

feasible schedules rather than a single optimal schedule generally returned by most approaches.  
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While a scheduling purist may always look for an optimal solution, decision-makers may prefer an 

alternate-optimal solution, or even a mathematically sub-optimal solution, for subjective or non-

quantifiable reasons.  The methodology used here for finding k-best schedules for a project 

provides decision makers such options.  The methodology also provides the sets of solutions 

required by the decomposition algorithm developed in the next chapter (see Chapter VI). 

The algorithm has two phases: an initialization phase and a search phase.  Before the algorithm 

is presented, the key assumptions are outlined. 

Assumptions. 

1. Activity modes are numbered in order of increasing duration. 

2. Only time-constant and time-increasing mode costs (cash flows) are considered. 

3. All costs are non-negative. 

4. Renewable resource availability need not be constant, but availabilities beyond the project 

horizon, D, are such that schedules completing beyond the project horizon are dominated 

by the set of k-best solutions.  This would be true, for example, if the availability of 

resources were zero for periods D+1, D+2, and so on.  In this case, only schedules 

completed by D would be feasible.  This assumption is stated in such a way that the usual 

assumption of constant resource availability can be relaxed, while at the same time 

assuring the problem remains bounded and optimality can be assured.  The Program 

Attributes Generator with Expediting Resources (PAGER) described in Chapter IV, as 

well as most other problem generators, uses the sum of activity durations, with each 

activity in its longest-duration mode, as the project horizon.  This is certainly a convenient 

upper bound on the project makespan.  The project manager may, however, choose any 

arbitrary value as the project horizon, provided there exists at least one precedence- and 

resource-feasible schedule that can be completed by the chosen horizon. 

5. During the Initialization Phase when the early- and late-start times of each activity are 

calculated, the activities are scheduled using their shortest duration mode.  If a mode of 

longer duration were used, the early start of successor activities would be greater than 

otherwise possible and the late start time of predecessor activities would be less than 

otherwise possible. 

6. Activities of zero duration (including, but not limited to, the dummy start and end activities 

of a project) may be included in the project.  They may represent cash flows not associated 
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with a specific activity, milestones within a project, or dummy project source/sink nodes 

within a multi-project program. 

Initialization Phase.  During the initialization phase, the problem (with the resource constraints 

relaxed) is solved using a CPM-type labeling routine.  The Generalized Critical Path Method 

(GCPM), detailed in Chapter IV, calculates the early and late start times of the activities based on 

their generalized precedence relationships.  With early start times determined, the order that 

activities are added to the schedule is fixed, early start time first (in the case of ties, low activity 

number first).  Fixing the order in which activities are added to the schedule is a departure from 

algorithms which gain their efficiency by enumerating only the active schedules.  These active-

schedule algorithms are proven to converge because they enumerate the active schedules of 

permutations of activities.  In scheduling the MRCPSP-GPR/EXP, though, all schedules must be 

enumerated (implicitly or explicitly), so there is no computational advantage to permutating 

activities.  The advantage, however, of adding activities in numerical order is a more 

straightforward implementation of the search scheme. 

Search Phase.  During the enumeration of the search tree, the algorithm descends from one 

level to the next, adding activities to the previous partial schedule.  Activities are scheduled to start 

only at times and in modes which are feasible to the generalized precedence and resource 

constraints.  When a leaf of the search tree is reached, the newly found schedule is added to the set 

of k-best solutions if its objective function value is as good as the objective function value of the 

current k-th best solution and discarded otherwise.  The algorithm, then, backtracks, first to 

unexplored start times of the current activity and mode assignment, then to unexplored modes of 

the current activity.  When all modes and start times of the activity at the current level have been 

exhausted, the algorithm backtracks to the previous activity to continue the enumeration of its 

modes and start times.  When the algorithm tries to backtrack from the source node, it terminates. 

The algorithm and associated notation are outlined below.  Without loss of generality, assume 

activities are numbered in the order in which they are scheduled so that activity i is added at level i 

of the tree. 
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Notation for Search Algorithm 

Activity Indexes: 

 i = the activity added at level i of the search tree 

 mi = the currently scheduled mode of activity i 

 si = the currently scheduled start time of activity i 

Activity Sets: 

 Oi = the set of activities which precede activity i 

 Ni = the set of activities which have a direct start-start lag relationship with activity i 

 *
iN  = the set of activities which have a direct or indirect lag relationship with activity i 

Resource Sets: 

 RQ  = the set of all renewable resources 

 NQ  = the set of all nonrenewable resources 

Time-Related Parameters: 

 F = the early program completion time 

 G = the program completion due date 

 D = the program planning horizon, or drop dead date  (F < G < D) 

 

 ei = the early start time of activity i 

  li = the late start time of activity i 

 wi = [ei, li], the start time window of activity i 

 

 
iimd  = the duration of activity i in mode mi 

 min
ij?  = the minimal start-start lag time between activities i and j 

 max
ij?  = the maximal start-start lag time between activities i and j 

Resource-Related Parameters: 

 R
qimi

r  = the units of renewable resource q required by activity i in mode mi 
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 R
qtiR ,  = the units of renewable resource q remaining at time t at level i 

 R
qtiH ,  = the units of expediting, renewable resource q remaining at time t at level i 

 

 N
qimi

r  = the units of nonrenewable resource q required by activity i in mode mi 

 N
qiR ,  = units of nonrenewable resource q remaining at level i 

 N
qiH ,  = the units of expediting, nonrenewable resource q remaining at level i 

Cost Parameters: 

 M
sim ii

c  = the cost incurred by scheduling activity i in mode mi at start time si at level i (for 

terminal activity J, this is the completion penalty) 

 R
sim ii

c  = the cost of expediting, renewable resources incurred by scheduling activity i in mode 

mi at start time si at level i 

 N
imi

c  = the cost of expediting, nonrenewable resources incurred by scheduling activity i in 

mode mi at level i 

 iC  = the total partial schedule cost after level i 

 )(k
JC  = the total complete schedule cost of the (current) kth-best schedule 

  

 

Basic MRCPSP-GPR/EXP Project Scheduler 

Step 0 Initialization (Start Time Labeling).  Run Generalized Critical Path Method (GCPM) 

Algorithm detailed in Chapter IV to calculate activity start time windows. 

Step 1 Let i = 1.  Assign activity 1 (the source node) its single mode, m1 = 1, and early start 

time, s1 = e1. 

Step 2 Let i := i + 1 and assign the next activity in order (activity i) its first mode, mi = 1. 

Step 3 Nonrenewable Resource Feasibility.  Determine if mi is feasible to the nonrenewable 

resource constraints (i.e., the sum of regular and expediting nonrenewable resources is 

sufficient for activity i’s nonrenewable resource demand).  That is, if 
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NN
qi

N
qi

N
qim QqHRr

i
???? ??  ,,1,1 , then mi is nonrenewable-resource feasible.  If not 

feasible, go to Step 12.  

Step 4 Assign activity i its early start time, si = ei. 

Step 5 Minimum Start Time Feasibility.  Determine if activity i’s current start time is feasible 

to the precedence and start-start minimal lag constraints.  Depending on the duration, 

iimd , of activity i and the duration, 
jjmd , of its predecessor activity j, the following 

conditions must hold for minimum start time feasibility.  If infeasible, go to Step 11. 

 0?
iimd  0?

iimd  

 

0?
jjmd  

ijmji Ojdss
j

????  ,  

ijCjss ijiji ?????? , ,min  

ijmji Ojdss
j

?????  ,1  

ijCjss ijiji ??????? , ,1min  

 

0?
jjmd  

iji Ojss ????  ,1  

ijCjss ijiji ??????? , ,1min  

iji Ojss ???  ,  

ijCjss ijiji ?????? , ,min  

 

Step 6 Maximum Start Time Feasibility.  Determine if activity i’s current start time is feasible 

to the start-start maximal lag and project horizon constraints. Depending on the 

duration of activity i and its predecessor, the following conditions must be true for 

maximum start time feasible.  If not feasible, go to Step 12. 
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 0?
iimd  0?

iimd  

 

0?
jjmd  

ijCjss ijiji ?????? , ,max  

1???
iimi dDs  

ijCjss ijiji ??????? , ,1max  

Dsi ?  

 

0?
jjmd  

ijCjss ijiji ??????? , ,1max  

1???
iimi dDs  

ijCjss ijiji ?????? , ,max  

Dsi ?  

 

Step 7 Renewable Resource Feasibility.  Determine if activity i’s current mode and start time 

are feasible to the renewable resource constraints (i.e., the sum of regular and 

expediting renewable resources in each period over which activity i extends is sufficient 

for activity i’s renewable resource demand).  That is, if 

ii imii
RR

qti
R

qti
R

qim dstsQqHRr ??????? ??  , ,,1,1 , then activity i’s current mode and 

start time are renewable-resource feasible.  If not feasible, go to Step 11. 

Step 8 Adjust Resources and Costs.  The new partial schedule formed by adding activity i in 

mode mi at start time si is feasible and may lead to an improved solution.  Adjust 

resource availabilities and the schedule cost as follows: 

?? N
N

qi
N

qim

N
qi

N
qim

N
qim

N
qiN

iq Qq
Rr
RrrR

R
i

ii ??
??
?
?
?

??
?
?
?

?
??

?
?

??  ,
 if 0
 if 

,1

,1,1  

?? N
N

qi
N

qim
N

qim
N

qi
N

qi

N
qi

N
qimN

iq Qq
RrrRH
Rr

H
ii

i ??
??
?
?
?

??
?
?
?

???
?

?
???

?  ,
 if 
 if 0

,1,1,1

,1  

??
i

i

ii
imii

R
R

qti
R

qtim

R
qti

R
qtim

R
qtim

R
qtiR

iqt dstsQq
Rr
RrrR

R ?????
??
?
?
?

??
?
?
?

?
??

?
?

??  , ,
 if 0
 if 

,1

,1,1  
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??
i

ii

i
imii

R
R

qti
R

qtim
R

qtim
R

qti
R

qti

R
qti

R
qtimR

iqt dstsQq
RrrRH
Rr

H ?????
??
?
?
?

??
?
?
?

???
?

?
???

?  , ,
 if 
 if 0

,1,1,1

,1  

?? R
sim

M
sim

N
imii iiiii

cccCC ???? ? 1  

Step 9 If activity i is NOT the terminal sink node, go to Step 2.  Otherwise (i.e., activity i is 

the terminal node), if this schedule is as good as the current k-th best solution, add this 

complete schedule to the set of k-best solutions.  

Step 10 Adjust Resources and Costs.  Remove activity i in mode mi at start time si from the 

current complete schedule.  Adjust resource availabilities and the schedule cost. 

Step 11 Backtrack by Start Time.  Assign activity i start time si := si + 1.  If start time, si, is less 

than or equal to the late start time of activity i ( ii ls ? ), go to Step 5. 

Step 12 Backtrack by Mode.  Assign activity i mode mi := mi + 1.  If mode, mi, is less than or 

equal to the maximum number of modes of activity i, go to Step 3. 

Step 13 Backtrack by Activity.  Backtrack to activity i := i – 1.  If 0?i , go to Step 11. 

Step 14 Stop.  Algorithm complete and k-best solutions found. 

  

In the mathematical formulation of precedence relationships (Chapter III, Equations (2) 

through (7)), it is generally assumed that both activities in a precedence relationship have non-zero 

duration.  Note, however, that the conditions in Steps 5 and 6 contain cases where one or both 

activities in a precedence relationship have zero duration.  As discussed in Chapter IV (see Figure 

4-11 and accompanying text), the rules for activities with zero duration are somewhat different 

than for those with non-zero duration.  Steps 5 and 6 implement these alternate rules. 

Since a cost is incurred only for the use of expediting resources, regular and expediting 

resource availabilities must be accounted for separately.  This accounting is done in Steps 8 and 10 

where resource availabilities are adjusted.  When adding an activity to a partial schedule in Step 8, 

one of two cases is true: 1) the demand by the activity for a particular resource is no greater than 

the current regular availability of that resource or 2) the demand for the resource is greater than 
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the current regular availability of that resource.  If the demand is no greater than the current 

regular availability, then the regular avail ability alone is decremented.  If, on the other hand, the 

demand exceeds current regular availability, then all of the regular availability is used first and 

then expediting resources are used to meet the balance of the resource demand.  Conversely, in 

Step 10 where activities are removed from the partial schedules, the freed resources are used first 

to backfill the expediting pool of resources and then the regular pool.  

With the Basic MRCPSP-GPR/EXP Project Scheduler outlined, attention is now turned to the 

convergence of the algorithm, in Theorem 5.1. 

Theorem 5-1. Optimality of the Basic MRCPSP-GPR/EXP Project Scheduler 

  

Theorem: If P is a feasible MRCPSP -GPR/EXP, the best solution found by the 

MRCPSP-GPR/EXP Project Scheduler is an optimal solution for P. 

Proof: Let P be a feasible MRCPSP-GPR/EXP with objective function ? . 

 Define a schedule of P to be a precedence- and resource-feasible assignment 

of a mode and start time to each activity in P, along with the accompanying 

expediting resources required to make that assignment feasible. 

 Let S be an optimal schedule for P with objective function value ? ?S? . 

 Must show that the Basic MRCPSP-GPR/EXP Project Scheduler finds a 

schedule S? with ? ? ? ?SS ?? ?? . 

 Let A be an explicit enumeration of all possible schedules of P, where each 

activity i in P may be performed in any of its respective modes, mi, and may 

start at any time in the interval ? ??,1 .  Then, A contains all schedules of P 

and, consequently, ?  a schedule AS ??  such that ? ? ? ?SS ?? ?? . 

 Now show that the Basic MRCPSP-GPR/EXP Project Scheduler eliminates 

all schedules, S  in A, where ? ? ? ?SS ?? ? , but does not eliminate S?. 
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 Enumeration Control.  Most of the steps of the Basic MRCPSP-GPR/EXP 

Project Scheduler control the incrementing and backtracking of the algorithm.  

A few additional steps limit the activity start time windows (Steps 5 and 6) 

and provide basic resource feasibility tests (Steps 3 and 7).  In the absence of 

Steps 3, 5, 6, and 7, the algorithm would explicitly enumerate every mode 

assignment of each activity, as well as every possible start time for each 

activity from t = 1 to ? .  Must show, then, that the start time limitations and 

feasibility tests do not eliminate solutions which would dominate all other 

solutions. 

 Reduction of Project Horizon.  In its initialization phase, the Basic MRCPSP-

GPR/EXP Project Scheduler eliminates all schedules which complete after the 

project horizon, D.  By design, the project horizon and renewable resource 

availabilities are defined in such a way that ?  a schedule which completes by 

D without the need for expediting resources.  In PAGER, as with most other 

problem generators, D is defined as the sum of all activity durations, with 

each activity in its longest-duration mode.  Regular renewable resource 

availabilities are, then, generated sufficiently high so that the above condition 

is always true.  If resource availabilities are given and not generated, then D 

must be chosen such that: (1) D is no less than the sum of all activity 

durations, with each activity in its longest-duration mode, and (2) the above 

regular renewable resource condition holds.  Assume, for the moment, that 

resource availability is constant.  This assumption is relaxed later.  

 Let ?S be a schedule for P, such that some activity, ?i , completes after time 

D.  By the way D is defined, scheduling activities back-to-back (regardless of 

order) at most spans D.  Consequently, scheduling activity ?i  to complete 

after D implies that schedule ?S  creates some time interval ? ?21  , tt , with 

Dt ?2 , when no activity is in process.  Because resource availability is 

assumed to be constant, all activities which are scheduled to start after 2t  can 

be shifted 112 ?? tt  time units to the left, while maintaining their relative 

temporal relations and without increasing expediting resource costs.  (If there 
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are other such time intervals remaining, they may be eliminated in the same 

way.) 

 Now, every activity in the revised schedule, ?
DS , completes by time D.  Since 

activity costs are non-decreasing in time and since activity ?i starts earlier in 

schedule ?
DS  than it did in schedule ?S , the cost of activity ?i  under schedule 

?
DS  is no greater than its cost under schedule ?S . The same holds true for any 

other activity shifted to create schedule ?
DS .  Therefore, the cost of the revised 

schedule, ?
DS , is no greater than that of schedule ?S , ? ? ? ???? SS ?? D .  This 

implies that, for every schedule, ?S , which completes after D, ?  a schedule, 

?
DS , which completes by D which has objective function value less than or 

equal to ?S .   Therefore, if all schedules which complete after D are 

eliminated, there yet remains an optimal schedule for P. 

 The assumption of constant resource availabilities may, now, be relaxed with 

the assumption that times beyond D are either infeasible (e.g., zero resource 

availability), dominated, or of no practical interest to the Program Manager. 

 Reduction of Early/Late Activity Start Times.  The initialization phase also 

calculates early and late start time windows, with the assumption that no 

activity starts before time 1 or completes after time D.  The proof for the 

GCPM, in Chapter IV, shows that no activity may start before its calculated 

early start time or after its late start time without violating generalized 

precedence constraints or pushing some other activity outside the assumed 

start or completion bounds of the project.  Hence, eliminating activity start 

times outside their respective early/late start times (Steps 5 and 6) eliminates 

only infeasible assignments and, therefore, cannot eliminate an optimal 

solution. 

 Resource Feasibility Tests.  Steps 3 and 7 perform tests to check if adding an 

activity (in a given mode and start time) to the current partial schedule creates 

a resource conflict.  If so, the next mode and start time assignment are 
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checked.  Again, these steps eliminate only infeasible activity assignments and 

cannot, therefore, eliminate an optimal solution. 

 Optimality Test.  Step 9 is executed only when a complete (and feasible) 

schedule, S , has been constructed.  A comparison between S  and the 

currently best schedule, Ŝ , is made.  If ? ? ? ?SS ˆ?? ? , then S  is eliminated.  

Otherwise, S  becomes the current best solution, Ŝ := S .  When all schedules 

have been enumerated and tested, let the remaining best solution be relabeled 

S?. 

 It has been shown that the Basic MRCPSP-GPR/EXP Project Scheduler 

explicitly enumerates all schedules of P within the bounds of the project 

horizon, D.  It has also been shown that limiting the search for schedules that 

complete by D does not eliminate any schedule which dominates all other 

schedules.  Therefore, the Basic MRCPSP-GPR/EXP Project Scheduler has 

been shown to eliminate all schedules, S  in A, where ? ? ? ?SS ?? ?? .  Since no 

other schedules remain untested, S? is an optimal solution, where 

? ? ? ?SS ?? ?? . 

  

Bounding Rules 

Recall that, in the Scheduler, activities are scheduled to start only at times and in modes which 

are feasible to the generalized precedence and resource constraints.  In addition to the basic 

algorithm’s rudimentary feasibility tests, more advanced feasibility and goodness tests (based on 

objective function value) may be applied to eliminate partial schedules which lead to infeasible 

complete schedules or schedules dominated by the current k-th best schedule.  By applying better 

feasibility tests and by checking schedule goodness at each level of the tree rather than only at the 

leaves where complete schedules are found, unproductive branches of the tree may be fathomed 

sooner, thereby reducing the portion of the tree explicitly enumerated.  The efficiency of the 

algorithm may be improved based on the degree to which feasibility and bounding rules prune the 

search tree.  This section provides a number of these rules. 
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Bounding Rule ZDS (Zero-Duration Activity Start).  A zero-duration activity may have a cost 

as well as nonrenewable resource demands associated with it.  It does not, however, have any 

associated renewable resource demands.  With the assumption that all mode costs are time constant 

or time increasing, there is no benefit to delaying a zero-duration activity, either to reduce its cost 

or to make it renewable resource feasible.  Therefore, the algorithm does not enumerate any but the 

earliest feasible start time of a zero-duration activity.  Backtracking, consequently, proceeds to 

enumerating any unenumerated modes of the zero-duration activity or backtracking to a previous 

activity (i.e., level) in the precedence tree. 

 Bounding Rule ZDS may replace Step 11 which becomes: 

Backtrack by Start Time.  If the duration of activity i is zero, go to Step 12.  Otherwise, assign 

activity i start time si = si + 1.  If start time, si, is less than or equal to the late start time of 

activity i ( ii ls ? ), go to Step 5. 

Feasibility Rule NRF (Nonrenewable Resource Feasibility).  Step 3 checks if there is sufficient 

remaining nonrenewable resources available to schedule activity i in mode mi.  A stronger bound 

on the feasibility of the current mode selection, however, is to verify that the remaining available 

nonrenewable resources are at least as great as the demand, not only of the current activity in its 

selected mode, but also the demand of all remaining unscheduled activities in their lowest demand 

modes as well.  That is, 

? ? NN
qi

N
qi

J

ij

N
jmqMm

N
qim QqHRrr

j
i

????? ??
?? ??  ,min ,1,1

1

. 

Sprecher and Drexl (1996a: 19) show that this bounding rule can be easily implemented as a 

preprocessing step.  For each nonrenewable resource, q, the modes of each activity, i, are 

compared to find the minimum possible usage of resource q by activity i: 

? ?N
imqMm

N
iq rrmin

i?
? min   for i = 1, … , J. 

Then, the input data is adjusted by reducing the requirement for resource q by each mode of 

activity i by the minimum possible usage of resource q by activity i: 
N
iq

N
imq

N
imq rminrr ??   for i = 1, … , J, iMm ? , NQq ?  

Finally, the input data is adjusted by reducing the availability of resource q by the sum of the 

activities’ minimum possible requirements: 
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  for NQq ?  

Therefore, bounding rule NRF is applied as Step 0a and is added between Steps 0 and 1.  Step 3 is 

applied as normal. 

Bounding Rule NEC (Nonrenewable Expediting Resource Cost).  It is possible, at any level of 

the search tree, for an activity to be scheduled which is feasible as to the availability of 

nonrenewable resources but which cannot lead to an improved schedule.  Assume activity i is being 

added to the i-1 partial schedule in mode mi and that Step 3 has determined the addition of activity 

i to be nonrenewable resource feasible.  It is possible, however, that nonrenewable resource 

feasibility can be achieved only at the cost of some quantity of expediting resources.  If the cost of 

those expediting resources plus the running cost of the i-1 partial schedule exceeds the cost of the 

current k-th best solution, then the addition of activity i in mode mi cannot lead to an improved 

schedule.  Activity i in mode mi is, therefore, rejected as an improving addition to the i-1 partial 

schedule and its corresponding branch fathomed. 

This bounding rule is further strengthened when applied in conjunction with Bounding Rule 

NRF.  If the cost of expediting resources resulting not only from the addition of activity i in mode 

mi but also from the addition of the remaining unscheduled activities in their least demanding 

modes is considered, fathoming of unimproving branches can occur higher in the tree and the total 

search time is reduced. 

Bounding Rule NEC, then, can be applied as Step 3a between Steps 3 and 4 and can be 

expressed as follows: 

If ? ? )(

1
,1 min,0max k
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?
??
?
?
?

??
?
?
?

???? ? ?
? ?? ?? , add activity i in mode mi.  

Otherwise, go to Step 12 (i.e., fathom the current branch). 

Feasibility Ru le EST (Early Start Time).  The basic algorithm enumerates over the entire 

GCPM start time window for each activity, relying on Step 5 to determine the generalized 

precedence feasibility of each start time.  In any branch of the search tree, however, the earliest 

feasible start time of an activity may be explicitly determined based on the completion time of 
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generalized predecessor activities which have already been scheduled.  Consequently, Steps 4 and 5 

may be replaced by Bounding Rule EST (call it Step 4/5) as follows: 

Assign activity i the maximum of its early start time, the latest completion time of all its 

predecessors, and its earliest start-start minimum lag feasible time.  That is, 
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 Since all subsequently enumerated start times for any activity are minimal start time 

feasible, the direction given in Step 12 to go to Step 5 may be changed to redirect to Step 6. 

Feasibility Rule MD (Mode Duration).  Step 6 determines if the current start time of an 

activity is feasible to the maximal lags of its generalized predecessors.  It also verifies that the 

current start time plus duration of the activity does not exceed the project due date.  Feasibility 

Rule MD goes further to assure that if activity i is scheduled in mode mi at start time si, the earliest 

possible finish time of the remaining unscheduled activities (in their shortest-duration modes) does 

also not exceed the project due date.  If any do, the current start time and later start times are 

infeasible and those branches of the tree are fathomed. 

Feasibility Rule MD checks if any critical path emanating from activity i results in any activity 

finishing after the project due date.  If so, not only can the current and future start times of activity 

i in mode mi be fathomed, but the late start time of activity i can be reduced to li = si – 1 for any 

modes of equal or greater duration. 

To determine the critical paths emanating from activity i, the GCPM is first run to determine 

the early start time of each activity.  Recall that GCPM is run with the shortest-duration mode of 

each activity.  The (shortest-mode) duration of activity i is, then, artificially increased by one and 

temporarily fixed.  The GCPM is run again.  Those activities whose start times have been delayed 

as a result of activity i’s duration being increased are on a mode critical path from activity i (i.e., 

activity i has no free slack).  It follows that any of these mode critical path activities are also 

delayed if activity i’s start is delayed.  To simplify the rule, however, recall that no activity can 
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finish later than the terminal dummy activity, J.  Therefore, it is sufficient to consider whether or 

not activity J is on a mode critical path from activity i. 

Bounding Rule MD, then, may be incorporated as Step 6a as follows: 

Mode Duration Feasibility.  Let the delay, ? , resulting from activity i being scheduled in 

mode mi at start time si be defined as the difference between si and activity i’s early start time, ei, 

plus the difference between the duration of activity i in mode mi and its shortest-duration mode.  

? ? ? ?1iimii ddes ?????  

In other words, any activity on activity i’s mode critical paths is delayed both by activity i starting 

later than its early start time and by activity i being scheduled in a mode longer than its shortest-

duration mode.  Therefore, activity i cannot be scheduled in mode mi at start time si if (1) activity J 

is on activity i’s mode critical path and (2) the early start time of activity J plus ?  exceeds the 

project horizon D, 

DeJ ?? ? . 

Bounding Rule MC (Mode Cost).  If the cost of scheduling activity i in mode mi at start time si 

plus the running cost of the i-1 partial schedule exceeds the current k-th best solution, then start 

time si and any later start time for activity i in mode mi leads to a dominated solution and can be 

fathomed.  If, in addition, the lowest mode costs of the remaining unscheduled activities are also 

added, an even stronger bound can be achieved. 

Recall that an activity’s mode cost is not only a function of its mode, but also of its start time.  

Therefore, in a fashion similar to that for Bounding Rule MD, the GCPM is run to determine the 

early start time of each activity.  The early time of activity i is, then, artificially increased by one 

time unit and temporarily fixed.  The GCPM is run again.  Those activities whose start times have 

been delayed as a result of activity i’s start time being delayed are on a start time critical path 

from activity i.  These activities, though, are not necessarily on a mode critical path from activity i.  

Therefore, Bounding Rule MC may be added as Step 6b as follows: 

Define M
i?  as the set of activities on a mode critical path from activity i.  Define S

i?  as the 

set of activities on a start time critical path from activity i.  Then, each unscheduled activity, j, 

is in set M
i? , set S

i? , or neither set.  If activity j is in neither set, ?  an activity ?ji such that 

M
i j

j ?? ?  or S
i j

j ?? ? , even if that activity is the dummy source activity. 
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Then, let ? ? ? ?1iimii
M ddes ?????  be the delay for activities in set M

i? .  Let ? ?ii
S es ???  

be the delay for activities in set S
i? .  Define corresponding delays for activities in sets M

i j ??  

and S
i j ?? . 

Now, compute the running cost of the i-1 partial schedule plus the cost of scheduling activity i 

in mode mi at start time si plus the mode cost of the unscheduled activities in their minimum 

cost mode and earliest feasible start time.  If that cost is no greater than the current k-th best 

solution, retain activity i in mode mi at start time si.  Mathematically, if  

  ? ?? ? ? ?? ????? ??
?
??

??
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M
ejmMm

M
simi

S
i

S
ijj

M
i

M
ijj

ii
cccC

??
11

1 minmin ??  

  ? ? ? ? )(

11

minmin k
J

J

j
ij

M
ejmMm

J

j
ij

M
ejmMm

Ccc
S
ji

S
ijjj

M
ji

M
jijj

?
??
?

??
??

??
?

??
? ??

?

?

?

?

?
??

??
?
??

??
??

?? ,  

then retain the current start time.  Otherwise, go to Step 12. 

Bounding Rule REC (Renewable Expediting Resource Cost).  As is the case with 

nonrenewable resources, the addition of activity i in mode mi at start time si may be renewable 

resource feasible but lead to a dominated solution.  This is the case when other running costs plus 

the cost of renewable expediting resources required for feasibility exceeds the value of the current 

k-th best solution.  Thus, a check for dominance may be added as Step 7a as follows:  If 

? ? )(
1

,1 ,0max k
J

Kk

ds

st

R
kti

R
kimi CRrC

R

iimi

i

i
??? ? ?

?

??

?
? , 

then the current partial schedule may lead to an improved solution.  If not, go to Step 11. 

If used in conjunction with Bounding Rules NEC so that the cost of nonrenewable expediting 

resources and renewable expediting resources are considered, fathoming occurs even earlier.  The 

resulting equivalent fathoming condition would be: 
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Feasibility Rule MOD (Infeasible Modes).  Feasibility Rule MOD tests each mode of each 

activity to determine if it is feasible as to the renewable and nonrenewable resource constraints.  A 

mode, mi, of activity i is infeasible vis -à-vis a nonrenewable resource, qN, if the usage of qN by mi 

plus the minimal usage of qN by all other activities exceeds the availability (regular plus 

expediting) of qN.  A mode, mi, of activity i is infeasible vis -à-vis a renewable resource, qR, if the 

usage of qR by mi exceeds the availability (regular plus expediting) of qR in the time period where 

the availability of qR is greatest.  Note that when comparing renewable resource usage against 

availability, the time period when that resource is most available must be determined.  This is 

required because of the assumption of nonconstant resource availability. 

Feasibility Rule MOD is performed at the beginning of the search phase to eliminate infeasible 

modes as soon as possible.  The rule is inserted into the algorithm as Step 0b as follows:  For each 

mode, mi, of each activity, i, if 

? ? N
q

N
q

ij

N
jmqMm

N
qim HRrr

j
i

??? ?
? ?

min  

for any nonrenewable resource, qN, or if 

? ?
? ?R

tq
R
tqDt

R
qim HRr

i
??

?  ,1
max  

for any renewable resource, qR, then mode, mi, of activity i is infeasible and eliminated from further 

consideration. 

Testing 

Extensive testing was conducted to address a number of issues about the MRCPSP-GPR/EXP 

Scheduler.  These include, but are not limited to, an investigation into the computational 

contribution of the optional bounding rules and a comparison of the algorithm versus a general 

integer programming solution approach.  Each issue is addressed separately below.   

For all testing, problem instances were generated using PAGER and solved using a 750 MHz, 

Pentium III processor with 256 MB of Random Access Memory (RAM).  A total of 4992 

problems were generated, most of which were solved in a variety of ways (i.e., using different 
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combinations of bounding rules and / or alternate values of k).  The total number of tests conducted 

is 52,521. 

Note that in some of the charts below, the term job is used in place of activity.  The two terms 

are intended to be equivalent and job is used simply to conserve space. 

Test Problem Parameters Held Constant.  A review of Chapter IV reveals an extensive list of 

parameters that can be set in PAGER to generate tailor-made problem instances. Some parameters, 

such as the minimum and maximum number of start or end nodes, can be altered to shape the 

underlying project network.  In this particular case, the parameters are set to give the most 

flexibi lity to PAGER, with the minimums being set to one and the maximums set to the number of 

activities in the project.  This is required to assure that the network Restrictiveness parameter 

controls the network structure.  For example, a Restrictiveness of one leads to an end-to-end string 

of activities, requiring the minimum number of start and end nodes to be one.  On the other hand, a 

Restrictiveness of zero produces a network where there are not temporal relationships at all 

between the activities.  This requires that the maximum number of start and end nodes be at least 

as great as the number of activities. 

Other parameters are held constant to manage the size of the experimental design.  Varying 

some of these parameters might produce interesting excursions to this study.  The parameters held 

constant throughout testing include: 

?? Lower and Upper Bounds on Activity Lags:  When a generalized precedence exists 
between two activities, say activities i and j, then the difference between the start times of 
activities i and j must be no less than their minimal lag and no greater than their maximal 
lag.  Minimal lags were randomly drawn from between –2 and +2  and maximal lags from 
between +4 and +8.  For instance, suppose the minimal lag is randomly chosen to be –1 
and the maximal lag is randomly chosen to be +6.  This implies that activity j may start as 
early as one time period before the start of activity i or as late as 6 time periods after the 
start of activity i.  The choice of intervals [–2, +2] and [+4, +8] for randomly drawing 
minimal and maximal lags, respectively, was arbitrary.  These values were chosen simply 
to give some variety to the generalized precedences, while allowing for the possibility of 
concurrent activity start times. 

?? Resource Demands:  The number of units of a particular resource that an activity may 
require was randomly drawn from between 1 and 10. 

?? Project Penalty Cost:  If a project is due at time t, then a project completion penalty is 
assessed starting at time t+1.  The penalty to be assessed at time t+1 was randomly drawn 
from between 500 and 750 units.  For each period beyond time t+1, the penalty assessed is 
increased by some increment, randomly drawn from between 400 and 500 units.  Again, 
this was a matter of preference. 
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?? Mode Costs:  Each scheduled activity is assessed a cost which is a function of the mode 
and start time.  When activity modes are generated, each is assigned a baseline cost 
randomly drawn from between 50 and 100 units.  A mode’s baseline cost is assessed if the 
activity is scheduled in that particular mode at the activity’s early start time.  If the activity 
is scheduled later than at its early start time, the mode’s baseline cost plus a time-
dependent incremental cost is assessed.  The incremental cost associated with a mode was 
also randomly drawn from between 50 and 100 units. 

?? Expediting Resource Costs:  If an expediting resource, either renewable or nonrenewable, 
is used, an expediting resource cost is assessed.  Each expediting resource is assigned a 
cost randomly drawn from between 0 and 50 units. 

 

Table 5-1 summarizes the problem parameters held constant throughout testing.   

Table 5-1.  Problem Generation Parameters Held Constant 

Min Max
Minimal Lag -2 2
Maximal Lag 4 8
Resource Demand 1 10
Base Project Penalty 500 750
Project Penalty Increment 400 500
Base Mode Cost 50 100
Mode Cost Increment 50 100
Expediting  Resource Cost 0 50  

 

Test Problem Parameters Which Are Varied.  A number of key parameters used to generate 

test problems were varied throughout the testing.  Some of these are parameters identified by other 

researchers (e.g., Kolisch et al., 1995;  Schwindt, 1996; Van Hove, 1998) as having the greatest 

effect on problem difficulty.  Others are key features of MRCPSP-GPR/EXP that may impact 

problem difficulty.  These parameters are outlined in Table 5-2.  Table 5-2 does not list the values 

that these parameters might take.  The parameter values are, instead, introduced when each 

experiment is described below. 

The test designs that are introduced in this section are referred to as the full, reduced, and 

minimal designs.  The adjectives describing the designs are used simply to reflect their relative 

scopes and to provide a convenient means of referring to them. 
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Table 5-2.  Parameters Which Are Varied 

PARAMETER
Number of Modes Per Activity
Job Duration, Maximum
Lag Fraction
Project Network Restrictiveness
Number of Renewable/Nonrenewable Resources
Renewable/Nonrenewable Resource Factor
Regular Renewable/Nonrenewable Resource Strength
Total Renewable/Nonrenewable Resource Strength  

 

Computational Contribution of Bounding Rules.  The first experiment conducted was designed 

to assess the contribution each of the eight optional bounding rules makes to solution time.  Since 

each rule reduces the algorithmic search space, each should, theoretically, improve overall problem 

solution time.  However, there is computational overhead associated with each rule.  Therefore, an 

experiment to determine if there is a practical contribution by the rules is essential. 

Table 5-3.  Reduced Test Design 

PARAMETER LEVELS
Number of Modes Per Activity 1 3
Job Duration, Maximum 10 20
Lag Fraction 0.00 0.20
Project Network Restrictiveness 0.00 0.50 1.00
Number of Renewable/Nonrenewable Resources 1 3
Renewable/Nonrenewable Resource Factor 0.50 1.00
Regular Renewable/Nonrenewable Resource Strength 0.00 0.50 1.00
Total Renewable/Nonrenewable Resource Strength 1.00
Total Combinations  =  288  

 

The experiment was conducted by generating 1440 projects with five activities each using the 

reduced test design in Table 5-3.  The reduced design contains 288 design points.  Five projects 

were generated for each design point. 

The projects were scheduled using the basic algorithm and, then, using each individual 

bounding rule.  The results, shown in Table 5-4, list the rule(s) applied, the solution times, and the 

improvement in solution time offered by each rule (as a percentage of the solution time without 

rules).  Figure 5-1 shows the results graphically.  Rule MC showed the greatest single-rule 

improvement, solving problems (on average) in 0.002 of the time required by the basic solution.  
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On the other hand, Rules MD, MOD, and NRF were only slightly better than solving with no rules 

at all.  When all the rules are combined, the solution algorithm solved the problem set in 0.001 of 

the basic case solution time. 

Table 5-4.   Rule vs. Average Solution Time (seconds) for 5 Activities 

Ave Time as
Rule Min Average Max Std Dev % of "None"

None 0 5.808 170.7 17.407 100.0%
MD 0.000 5.545 166.530 16.557 95.5%
MOD 0.000 5.493 166.110 16.452 94.6%
NRF 0.000 5.485 166.220 16.466 94.4%
EST 0.000 4.293 128.250 12.777 73.9%
ZDS 0.000 2.259 57.840 6.320 38.9%
REC 0.000 0.991 44.290 3.558 17.1%
NEC 0.000 0.497 28.050 2.169 8.6%
MC 0.000 0.009 2.330 0.087 0.2%
All 0.000 0.003 0.950 0.030 0.1%

Solution Time (seconds)
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Figure 5-1. Rule vs. Average Solution Time (seconds) for 5 Activities 

The next step in the investigation of the bounding rules was to generate 288 ten-activity 

projects, one instance for each design point.  These were solved both with all rules and without 

rules.  A time limit of 300 seconds (5 minutes) was imposed on the solution time for each problem.  

When none of the rules were applied, only 54 of the 288 problems solved to optimality within the 
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time limit.  By contrast, 256 problems solved to optimality within 300 seconds when all of the rules 

were applied (see Table 5-5 and Figure 5-2). 

Table 5-5.  Rule vs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities 

Rule
Number of Optimal 

Solutions Found
% of Total 

Problems Solved
None 54 18.8%
All 256 88.9%  
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Optimality Within 300 Second Limit

0

50

100

150

200

250

300

None All
Bounding Rule

P
ro

bl
em

s 
S

ol
ve

d 
to

 
O

pt
im

al
ity

 (O
ut

 o
f 2

88
)

 

Figure 5-2. Rule vs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities 

When the number of problems solved to optimality were tallied as a function of the problem 

characteristics, neither the fraction of generalized precedences, the resource factor (RF), or the 

resource strength (RS) were important factors in the number of problems solved within the time 

limit.  However, the number of modes and the network restrictiveness (RT) were important factors.  

When no bounding rules were used, only problems (54 of 144) with a single mode were solved 

within the time limit (Table 5-6 and Figure 5-3).  When all of the rules were used, however, 133 of 

the 144 problems with a single mode (92.4%) solved to optimality within the time limit and 123 of 

the 144 problems with three modes (89.6%) solved to optimality within the time limit. 
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Table 5-6.  Rule vs. Problems Solved to Optimality (Within 300 sec.)                                                 

for 10 Activities and Varying Modes 

Rule 1 3 Total
None 54 0 54
All 133 123 256

Modes
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Figure 5-3. Rule vs. Problems Solved to Optimality (Within 300 sec.)                                              

for 10 Activities and Varying Modes 

Table 5-7 and Figure 5-4 show the results for varying levels of RT.  When no bounding rules 

are used, almost all of the problems solved to optimality within the time limit have an RT of 1.0 

(the easiest case).  When all bounding rules are used, 71.9%, 94.8%, and 100% of the problems 

are solved with an RT of 0.0, 0.5, and 1.0, respectively.  Based on these results, the bounding rules 

materially improve solution time.  All further experiments use all bounding rules. 

Table 5-7.  Rule vs. Problems Solved to Optimality (Within 300 sec.)                                                 

for 10 Activities and Varying RT 

Rule 0.0 0.5 1.0 Total
None 0 6 48 54
All 69 91 96 256

Network Restrictiveness
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Bounding Rules vs. Problems Solved to 
Optimality Within 300 Second Limit
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Figure 5-4. Rule vs. Problems Solved to Optimality (Within 300 sec.)                                               

for 10 Activities and Varying RT 

Comparison to Integer Programming.  As previously discussed, no other specialized algorithm 

for solving the MRCPSP-GPR/EXP exists in the literature, leaving only general IP solvers 

available for project scheduling.  This new algorithm was tested against a leading commercial IP 

solver, IBM’s Optimization Solutions Library (OSL).  OSL has the benefit of exploiting special 

ordered sets of variables (SOS variables). 

The same 1440 five-activity instances and 288 ten-activity instances used for testing the 

bounding rules were used to compare the new algorithm against OSL.  Of the 1440 five-activity 

instances, OSL solved 1405 to completion within a 15-minute time limit.  Of the remaining 35 

instances (2.4%) which exceeded the maximum allowed 15 minutes of CPU time, ten were allowed 

to run for 2 hours each without successfully completing.  On average, the Scheduler solved the 

1440 test instances in 0.002 the time it took OSL to solve the 1405 (see Table 5-8).  Recall, 

though, that the 1440 instances that the Scheduler solved included the 35 instances which were too 

difficult for OSL to solve in 15 minutes. 
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Table 5-8.  Scheduler vs. OSL Solution Time (seconds) for 5 Activities 

Ave Time as
Rule Min Average Max Std Dev % of "OSL"

OSL 0.03 1.71 63.74 5.89 100.0%
Scheduler 0.00 0.00 0.95 0.03 0.2%

Solution Time (seconds)

 
 

 When the Scheduler and OSL were compared against the 288 ten-activity problems 

(Figure 5-9), OSL failed to solve 31 instances (10.8%) within a 12-hour time limit.  Comparing the 

instances OSL did solve to the Scheduler results, the Scheduler still solved the problem instances in 

5.2% of the time required by OSL. 

Table 5-9.  Scheduler vs. OSL Solution Time (seconds) for 10 Activities 

Ave Time as
Rule Min Average Max Std Dev % of "OSL"

OSL 0.10 326.72 29460.57 1957.34 100.0%
Scheduler 0.00 17.09 872.71 88.35 5.2%

Solution Time (seconds)

 

Taking a closer look at the Scheduler versus OSL for solving ten-activity projects, consider the 

impact of RT.  RT had a particular impact on the relative solution times of the Scheduler and OSL 

(see Table 5-10 and Figure 5-5).  The higher the Restrictiveness (the easier the underlying 

network), the more the Scheduler improved solution time.  For totally unrestricted networks (RT = 

0.0), the Scheduler was only about three times as fast as OSL.  For increasingly restricted 

networks, the Scheduler considerably decreases solution time.  The results of this analysis confirm 

the literature that general IP solvers are not usually as efficient solving project scheduling problems 

as specialized algorithms. 

Table 5-10.  Scheduler vs. OSL Improvement by Restrictiveness for 10 Activities 

RT OSL Sub Improvement
0.0 131.260 44.252 0.337
0.5 188.008 13.379 0.071
1.0 698.890 0.017 0.000

Total 326.723 17.085 0.052  
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Figure 5-5. Scheduler vs. OSL Improvement by Restrictiveness for 10 Activities 

Solution Results vs. Key Parameters.  Attention now turns to the question of how key 

parameters affect solution results.  To answer this question, the full test design in Table 5-11 was 

used. 

Table 5-11.  Full Test Design 

PARAMETER
Number of Modes Per Activity 1 3
Job Duration, Maximum 10 20
Lag Fraction 0.00 0.20
Project Network Restrictiveness 0.00 0.25 0.50 0.75 1.00
Number of Renewable/Nonrenewable Resources 1 3
Renewable/Nonrenewable Resource Factor 0.50 1.00
Regular Renewable/Nonrenewable Resource Strength 0.00 0.50 1.00
Total Renewable/Nonrenewable Resource Strength 0.00 0.50 1.00
Total Combinations  =  960

LEVELS

 

One problem instance was generated at each of the 960 design points for projects with 10, 20, 

and 30 activities.  Additionally, one instance at each of the 576 design points in the minimal test 

design (Figure 5-12) was generated for projects with 50 activities. 
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Table 5-12.  Minimal Test Design 

PARAMETER LEVELS
Number of Modes Per Activity 1 3
Job Duration, Maximum 10 20
Lag Fraction 0.00 0.20
Project Network Restrictiveness 0.00 0.50 1.00
Number of Renewable/Nonrenewable Resources 1 3
Renewable/Nonrenewable Resource Factor 0.50 1.00
Regular Renewable/Nonrenewable Resource Strength 0.50 1.00
Total Renewable/Nonrenewable Resource Strength 0.00 0.50 1.00
Total Combinations  =  576  

Each of the problem instances was solved using the Scheduler with a maximum time limit of 

20 seconds.  Since the objective of this experiment was to take a broad view of solvability as a 

function of key parameters, the 20-second time limit was selected to control the total time required 

to solve the 3456 test problems.  Table 5-13 shows the overall results, listing the number of 

problem instances which were infeasible, the number which exceeded the 20-second time limit, and 

the number solved to optimality.  Figures 5-6 and 5-7, chart the number of occurrences and relative 

percentage of each result, respectively.  The reason for these results was investigated further. 

Table 5-13.  Solution Results 

RESULT 10 20 30 50 10 20 30 50 Total
Infeasible 85 134 156 97 8.9% 14.0% 16.3% 16.8% 472
Over 20s Limit 203 429 515 330 21.1% 44.7% 53.6% 57.3% 1477
Optimal 672 397 289 149 70.0% 41.4% 30.1% 25.9% 1507
Total 960 960 960 576 100.0% 100.0% 100.0% 100.0% 3456

JOBSJOBS

 

Consider first the infeasible problems.  Though an in-depth discussion of the infeasible 

problems has little bearing on the effectiveness of the Scheduler, it does provide worthwhile 

insights into the nature of the MRCPSP-GPR/EXP. 

Kolisch et al. (1995) report that a low availability of resources can lead to infeasible problem 

generation.  The results in Table 5-14 confirm this conclusion, where a RS (regular plus 

expediting) of zero accounts for 68% of infeasible problems overall and an RS of 0.50 accounts for 

32%. 
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Figure 5-6. Solution Results as Occurrences 
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Figure 5-7. Solution Results as Percentages 
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Table 5-14.  Infeasible Problems 

RS 10 20 30 50 Total Percent
0.0 70 94 99 59 322 68.22%
0.5 15 40 57 38 150 31.78%
1.0 0 0 0 0 0 0.00%

Total 85 134 156 97 472 100.00%

Activities

 

 

Figure 5-8 shows the percentage of infeasibilities accountable to each level of RS for activities 

of different size.   
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Figure 5-8. Infeasible Problems vs. Resource Strength 

The increase in the number of infeasible problems as a function of RS is compounded by both 

the number of modes in the project and the percent of activities with generalized precedence.  Table 

5-15 shows that three-mode projects account for  65% of the infeasibilities, while single-mode 

projects account for only 35 %.  When modes and RS are considered together, three-mode projects 

with a RS of zero account for 51% of the infeasibilities.  Figure 5-9 also depicts the relationship of 

RS and mode in infeasibilities.  Note that the chart includes all infeasible instances; therefore, the 

sum of the two columns adds to 100%. 
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Table 5-15.  Infeasibilities by RS and Mode 

RS 1 3 1 3 Total Percent
0.00 81 241 17.2% 51.1% 322 68.22%
0.50 83 67 17.6% 14.2% 150 31.78%
1.00 0 0 0.0% 0.0% 0 0.00%

Total 164 308 34.7% 65.3% 472 100.00%

MODES MODES

 

Infeasibility vs. Resource Strength & Modes
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Figure 5-9. Infeasible Problems vs. RS and Mode 

Table 5-16 shows that projects in which 20% of the activities have generalized precedence 

account for 76% of the infeasibilities, while projects with only standard finish-start precedence 

account for only 24%.  When generalized precedence and RS are considered together, problems 

where 20% of activities have generalized precedence and where RS is zero account for 45% of the 

infeasibilities (depicted also in Figure 5-10). 

Table 5-16.  Infeasibilities by RS and Percent of Activities with Generalized Precedence (GPR) 

RS 0% 20% 0% 20% Total Percent
0.00 108 214 22.9% 45.3% 322 68.22%
0.50 5 145 1.1% 30.7% 150 31.78%
1.00 0 0 0.0% 0.0% 0 0.00%

Total 113 359 23.9% 76.1% 472 100.00%

GPR % GPR %
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Infeasibility vs. Resource Strength & Gen Prec
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Figure 5-10. Infeasibilities vs. RS and Percent of Activities with GPR 

Consider, next, the problems which are not solved within the 20-second time limit.  Figure 5-

11 shows the total number of problems which exceeded the 20-second time limit versus network 

Restrictiveness.  Since the total number of feasible problems was different for each project size, the 

same data is presented in Figure 5-12, standardized as the percentage of problems exceeding the 

time limit attributable to each level of RT.  Note that Restrictiveness does not appear to play as 

important a role as it did in the number of problems which were infeasible.  As the number of 

activities in the problem increases, so does the percent of problems with an RT of 1.0 exceeding the 

time limit.  However, the percentages attributable to the other levels of RT remain fairly 

proportional in relation to each other.  For example, going from problems with 20 activities to 

those with 30 activities shows that of the problems which exceed the 20-second limit, the percent 

attributable to an RT of 1.0 increases from 6.1% to 8.5%.  Although the percentage attributable to 

an RT of 1.0 reduces the absolute percentages attributable to the other RT levels, an RT of 0.25 

still attributes between 64-69% of what an RT of 0.0 attributes, an RT of 0.5 still attributes 

between 63-70% of what an RT of 0.0 attributes, and an RT of 0.75 still attributes between 

58-64% of what an RT of 0.0 attributes. 
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Projects Exceeding 20-Sec. Limit vs. Restrictiveness
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Figure 5-11. Solution Time Exceeding 20 Seconds vs. Restrictiveness (Occurrences) 
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Figure 5-12. Solution Time Exceeding 20 Seconds vs. Restrictiveness (Percentages) 
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Though restrictiveness is only moderately important to the number of activities which do not 

solve in the 20-second time limit, resource strength is a significant factor.  Figure 5-13 shows the 

percentage of feasible problems which exceed the time limit versus RS.  The x-axis is divided by 

the RS of regular resources, with multi-shaded columns representing the different levels of RS of 

expediting resources (ERS).  There are a total of six columns representing the combinations of 

regular and expediting resources.  Problems were generated to have a total RS of at most 1.0.  

Therefore, there is no column corresponding to an ERS of 1.0 when the RS is 0.5 or 1.0.  Nor is 

there a column corresponding to an ERS of 0.5 when RS equals 1.0. 
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Figure 5-13. Solution Time Exceeding 20 Seconds vs. RS 

Note that when the regular RS is 0.0, the impact of expediting RS is negligible, with roughly 

the same percentage of problems exceeding the time limit.  On the other hand, when RS = 0.5, 

including additional resources improved to some degree the number of problems which were solved 

within the time limit.  This effect is likely a result of the way the Scheduler enumerates solutions.  

Recall that the Scheduler attempts first to schedule activities at their early start times and then at 
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progressively later times.  The existence of expediting resources generally makes more time-

compressed schedules feasible.  Since the more time-compressed schedules are enumerated early 

on, if the cost savings from a shorter project outweighs the cost of the expediting resources, the 

schedules found early on provide tighter bounds on the optimal solution and, thus, allows quicker 

fathoming of unproductive partial schedules.  Quicker fathoming, in turn, leads to faster 

completion of the algorithm.  Finally, most problems with an RS = 1.0, the easiest of the problems, 

can be solved within the time limit. 

Consider the feasible problems which are solved within the 20-second time limit.  Figure 5-14 

shows the relative solvability of the levels in each of the two-level factors.  The x-axis shows the 

two-level factors: modes, duration (Dur), number of renewable / nonrenewable resources (#Res), 

resource factor (RF), and percent of activities with GPR (Lag%).  Along with the factors are listed 

both levels: respectively termed the 1st level and the 2nd level.  The y-axis shows the number of 

problems solved to optimality as a ratio of the 1st factor to the 2nd factor.  The columns represent 

problems with 10, 20, 30, and 50 activities each. 
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Figure 5-14. Problems Solved by 2-Level Factors 

As an example, consider the number of modes per activity.  An activity may have either three 

modes (the 1st level) or one mode (the 2nd level).  Focusing just on problems with ten activities, 
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note that the light gray column above the label Mode: 3 / 1 indicates a value of 0.83.  This value 

reflects that the number of ten-activity problems solved to optimality in which each activity has 

three modes is 83% of the number of problems solved in which activities have only one mode.  

Hence, problems with ten activities and three modes per activity are somewhat more difficult than 

similar problems with only one mode per activity.  This is really no surprise since the size of the 

problems grows as the number of modes per activity increases. 

Having reviewed the chart, note that modes per activity is the most clearly influential two-level 

factor on the ability to solve problems.  As problem size (i.e., activities) increases, the impact of 

modes also increases.  Trends in the other factors are not quite so clear, but it is evident that all of 

the factor levels identified as the 1st level are at least more difficult than levels identified as the 2nd 

level.  This is not surprising since the 1st and 2nd levels were identified so that the theoretically 

more difficult level was the first level; thus, maintaining ratios below 1.0. 
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Figure 5-15. Problems Solved Versus Restrictiveness 

Turning now to the factors with more than two levels, Figure 5-15 shows a very clear trend in 

the impact of network restrictiveness on the percentage of feasible problems solved within the 20-

second time limit.  As RT increases (i.e., the network structure becomes more constrained), the 

percentage of problems solved increases as well.  The Scheduler performed very well on problems 
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with relatively high RT values, even for the problems with 50 activities.  An RT of 0.0, by 

contrast, makes a problem much more difficult and relatively few of these problems (especially in 

projects with over ten activities) solved to optimality within 20 seconds. 

An analysis of resource strengths also provides some interesting insights (see Figure 5-16).  

The easiest problems are those with a regular RS of 1.0.  These are problems where enough free 

(i.e., no cost) resources are available to schedule every activity at its early start time (the GCPM 

schedule).  For problems with ten activities, there is a near linear increase in the percentage of 

problems solved as regular RS increases.  For any level of RS, the percentage of problems solved 

also increases in near-linear fashion for increasing ERS. 
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Figure 5-16. Problems Solved Versus Resource Strength 

For problems with more than ten activities, a different phenomenon presents itself.  While the 

above observations (those of increasing RS yielding an increasing percentage of problems solved) 

hold true for resource strengths of 0.5 and 1.0, this is not the case for RS of 0.0.  When the RS is 

0.0, an ERS of 0.5 provides fewer solved problems than an ERS of 0.0.  This is contrary to the 

aforementioned trends.  This apparent aberration may be explained by the tradeoff between 

computational overhead and upper bounding of the solution.  The more expediting resources the 

Scheduler has to trade, the more overhead required to account for resources and their costs.  Thus, 

given some fixed RS, the problems solved should decrease as ERS increases.  On the other hand, 
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the Scheduler searches for schedules beginning with earlier activity start times and continuing to 

progressively later start times.  When ERS is high, more schedules with relatively early start times 

become feasible, allowing for a good upper bound on the objective function to be found early in the 

search.  The upper bound allows faster fathoming of unproductive partial schedules, resulting in 

faster solution times.  Thus, given some fixed RS, the problems solved should increase as ERS 

increases.  Characteristics of the problem itself and of the Scheduler may be driving solution time, 

and consequently the number of problems solved, in opposing directions.  Defining this tradeoff in 

greater detail may be worth further investigation. 

Solution Time.  Having reviewed the impact of key parameters on the problem results (i.e., 

feasibility and tractability, defined as solvable in 20 seconds or less), consider now in more detail 

the solution times required by the Scheduler.  A discussion of those problems which were solved in 

20 seconds or less is provided first.  Results are, then, reported on a subset of problems which were 

allowed to solve without time limit.  The same test set used in the previous subsection is used here. 

Figures 5-17, 5-18, and 5-19 show the cumulative number of feasible problems solved, broken 

out by time bin.  The x-axis shows the time bins, which are 0.01, 0.1, 1, 10, and 20 seconds.  If the 

time bins were labeled T1 through T5, respectively, then a problem falls into time bin, Ti, if it took 

longer than Ti-1 to solve but no more than Ti.  For instance, a problem which took 0.06 seconds to 

solve falls into time bin T2, 0.1. 

Figure 5-17 presents the cumulative number of feasible problems solved by number of project 

activities (or jobs), Figure 5-18 by RT, and Figure 5-19 by RS.  The most noteworthy observation 

is that, in most cases, the number of problems solved in the first 0.01 seconds comprises at least 

50% of all problems solved in 20 seconds or less.  For example, note in Figure 5-17 that for 

problems with 10 activities, 77% of problems solved within the 20-second time limit, while 48% of 

problems solved within 0.01 second.  Therefore, 62% of problems which solved within the 20-

second time limit did, in fact, solve within 0.01 second.  Some insights into this result are provided 

in the next subsection. 

Table 5-17 shows solutions times for a subset of 10- and 50-activity projects where no time 

limit was imposed.  The subsets come from the problems which previously required more than 20 

seconds to solve.  A total of 146 problems with 10 activities were solved to optimality.  As 

reported above, 203 problems exceeded the previous 20-second time limit.  A few of the most 

difficult of these problems were not solved to optimality in this experiment due to the excessive 
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solution time.  One of these problems, a problem with three modes per activity, an RT of 0.0, three 

renewable and three nonrenewable resources, an RF of 1.0, an RS of 0.0, and an ERS of 1.0, was 

terminated without completion after 302,800 seconds (over 84 hours).  Problems of similar 

difficulty were, therefore, not attempted.  In all cases, the problems expected to take a similarly 

long time to solve had an RT of 0.0 (a totally unconstrained network), an RF of 1.0 (every activity 

requiring every resource), and an RS of 0.0 (so few regularly available resources as to eliminate 

the possibility of scheduling any two activities to be in progress at the same time without incurring 

an expediting resource cost, provided any expediting resources were even available). 
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Figure 5-17. Cumulative Problems Solved by Time Bin and Jobs 

Of the 10-activity problems solved to optimality, the average solution time was just over 32 

minutes, with a minimum time of 20.2 seconds and a maximum time of just over 19 hours.  

Twenty-three of the 146 problems required longer than the average solution time. 

Two projects with 50 activities were also solved to optimality.  Both problems had three modes 

per activity, an RT of 0.5, three renewable and three nonrenewable resources, and an RF of 0.5.  

The problems differed only in their resource strengths.  One problem had an RS of 1.0 with an 

ERS of 0.0 (no expediting resources, but sufficient regular resources to schedule all activities at 

their early start time).  This problem required 88.2 seconds to solve.  The other problem had an RS 
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and an ERS both equal to 0.5.  This problem required 10,994.7 seconds (a little over 3 hours) to 

solve to optimality. 
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Figure 5-18. Cumulative Problems Solved by Time Bin and RT 
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Figure 5-19. Cumulative Problems Solved by Time Bin and RS 
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Table 5-17.  Solution Time for 10- and 50-Activity Projects 

Activities Count Min Average Max Std Dev
10 146 20.2 1920.6 69356.2 7495.4
50 2 88.2 5541.5 10994.7 5453.2

Solution Time (seconds)

 

Time to Optimal Solution.  In the previous subsection, it was shown that generally more than 

half of all problems solved within the 20-second time limit were, in fact, solved within the first 0.01 

second.  This result is understood by focusing on the time it took for the Scheduler to find an 

optimal solution compared to the time it took to complete the solution process.  As each problem 

was solved, any time the Scheduler found a solution better than the incumbent best solution, the 

time this solution was found was recorded.  When the solution process was completed, then, not 

only was the total solution time reported, but the time required to find the optimal solution was also 

reported.  The difference between the time for the entire solution process and the time to find the 

optimal, therefore, is the time required to verify that the optimal is indeed optimal.  Ideally, any 

enumeration scheme finds a good solution, or upper bound, early in the process to enable quicker 

fathoming of unproductive branches.  No upper bound is better, of course, than an optimal 

solution. 

The x-axis of Figure 5-20 is divided into the completion time bins used previously (i.e., the 

time bins used to divide the completion times, not the times to optimal).  For the set of problems 

completing within each of the completion time bins, the times it took to find an optimal solution to 

each problem in the set were averaged.  These averages are reflected on the y-axis.  For instance, 

for problems with ten activities which took at least ten seconds to solve but no more than 20, an 

optimal solution was found, on average, in just under six seconds. 

The results in Figure 5-20 are not the most revealing, however.  If the time required to find an 

optimal solution are also binned and, then, compared to the completion time bins, a much clearer 

picture is presented.  Figure 5-21 presents this picture.  Note that for the vast majority of 

problems, an optimal solution was found in no more than 0.01 second.  In some cases, though, it 

still took up to 20 seconds to complete the algorithm. 
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Figure 5-20. Average Time to Optimal Versus Completion Time Bin 
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Figure 5-21. Optimal Time Bin Versus Completion Time Bin 

Figure 5-22 presents the data in another way, showing the time bins to optimal for the different 

size problems (i.e., number of activities).  As expected, the smaller the problem, the sooner the 

Scheduler can be expected to find an optimal. 
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Figure 5-22. Problems Solved Versus Completion Time Bin 

Taking a look at the time to find an optimal solution versus RT (Figure 5-23) shows that, as 

expected, the higher the RT (and, hence, the easier the problem), the sooner the Scheduler is 

expected to find an optimal. 
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Figure 5-23. Problems Solved Versus Completion Time Bin by RT 
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Finally,  the time to find an optimal solution can be compared to the RS (Figure 5-24).  Most 

noteworthy, here, is that the Scheduler finds more optimal solutions in 0.01 second when (RS, 

ERS) equals (0.0, 1.0) than it equals (0.5, 0.0).  One might expect the overhead associated with 

accounting for expediting resources to significantly slow down the solution process.  As seen 

before, though, this overhead is overcome by the degree to which the expediting resources enable 

schedules with early start times, and their relatively good objective function values, to be feasible.  

It could be speculated that changing the costs of activity modes (which are start time dependent) 

relative to the cost of expediting resources might change this balance and lead to somewhat 

different results.  An investigation into this hypotheses is outside the scope of this study, but may 

be worth future consideration. 
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Figure 5-24. Problems Solved Versus Completion Time Bin by RS 

Returning to the 10-activity problems solved to optimality without time limit reveals that, on 

average, the optimal was found in the first 33.3% of the solution time and that the remaining 

66.7% of the time was spent verifying the optimal (see Table 5-18).  Noteworthy is that for the 10-

activity problem which took the longest to solve (about 19 hours), an optimal solution was actually 

found in the first 0.04 seconds. 
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Table 5-18.  Time to Optimal (10-Activity Projects) 

Activities Min Average Max Std Dev
10 0.0% 33.3% 100.0% 34.4%

Time to Optimal (% of Total Solution Time)

. 

Turning to the 50-activity problems shows that the problem which solved in 88.2 seconds 

required 74.9 seconds to find an optimal (84.9% of solution time) while the problem which solved 

in 10,994.7 seconds (around 3 hours) required 3982.3 seconds (around an hour) to find an optimal 

(only 36.2% of solution time). 

Completion Time vs. k.  The scheduling algorithm developed in this chapter is used to solve the 

subproblems of the decomposition approach discussed in the next chapter.  For the decomposition 

approach to work, each subproblem (or project) must be solved to find the k-best schedules for that 

project.  Besides finding the k-best schedules for purposes of the decomposition algorithm, a 

scheduler may be interested in the k-best simply to be able to present alternatives to a decision-

maker.   

To assess the impact on solution time of the choice of k, the test set used above (with 10-, 20-, 

30-, and 50-activity projects) was solved again for varying values of k.  To do so, the problems 

which were solved within the 20-second time limit imposed above were resolved to find the 10, 

100, and 1000 best solutions.  Since it is reasonable to expect that the Scheduler should take longer 

to track a higher number of best solutions, the imposed solution time limit was increased to 60 

seconds.  Table 5-19 and Figure 5-25 show that for all values of k, most problems were solved 

within the 60-second time limit. 

Table 5-19.  Problem Solution Results for k=1, 10, 100, 1000 

1 10 100 1000 Total
Exceeds Limit 0 1 19 70 1567
Optimal 1507 1506 1488 1437 5938
Total 1507 1507 1507 1507 7505

k -best Solutions

 
 

Reviewing a few fundamental statistics related to the solution time reveals (in Figure 5-26) that 

while the maximum time required to solve the problems approaches the 60-second limit (especially 



 5-53

for k = 100, 1000), the average completion times were relatively low (under seven seconds).  

Figure 5-26 also shows the average time to find an optimal. 
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Figure 5-25. Problem Solution Results for k=1, 10, 100, 1000 
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Figure 5-26. Solution Time Statistics for k=1, 10, 100, 1000 
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The average time to completion is shown in Figure 5-27, this time, breaking completion time 

out by the number of activities in the project. 
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Figure 5-27. Average Completion Time vs. k 

While the time to complete the solution process increases as k increases, the average time 

required per solution found drops off dramatically (Figure 5-28).  This result suggests that the 

marginal cost (in terms of solution time) of increasing k gets very small as k get larger.  The 

implication of this finding (to be addressed in greater detail in the next chapter) is that if one wishes 

to evaluate the set of k-best solutions to find a solution with certain properties (e.g., feasibility in 

the decomposition approach), it may be better to generate a greater number of solutions initially, 

than to risk having to resolve the problem if the intial set does not include a solution with the 

desired properties. 

Figure 5-29 shows the overall average solution time and overall average time to find an 

optimal solution versus k.  In this figure, however, the x-axis is scaled proportional to k.  

Consequently, the nature of the time versus k relationship can be better viewed and predictions can 

be made about the expected solution time for other values of k, k < 1000. 
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Figure 5-28. Average Time Per Solution 

Overall Average Solution Times vs. k
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Figure 5-29. Overall Average Solution Times Versus k 

Summary and Conclusions. 

In this chapter, the literature was reviewed for solution approaches applicable to the 

MRCPSP-GPR/EXP.  Two approaches, integer programming and an implicit enumeration scheme 
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by Talbot (1982), were identified for their potential as either a direct approach for solving the 

MRCPSP-GPR/EXP or as a basis which could be extended for the MRCPSP-GPR/EXP. 

The algorithm by Talbot was extended to incorporate the characteristics of generalized 

precedence and the availability of expediting resources.  Additional bounding rules to increase the 

speed of the algorithm were presented. 

The resulting Scheduler was tested to (1) evaluate the computational contribution of the 

bounding rules; (2) assess the speed of the Scheduler versus a commercially available IP solver; (3) 

evaluate the problem characteristics which most impact solution time; (4) investigate how early in 

the solution process the optimal solution is actually enumerated; and (5) assess the impact on 

solution time of solving a problem to find k-best solutions for varying values of k. 

The results of testing were positive.  The Scheduler is the first specialized algorithm capable of 

solving the single-project MRCPSP-GPR/EXP and its completion times were favorable compared 

to the commercial IP solver.  The solution times required by the Scheduler for finding k-best 

solutions appear to grow slowly enough to make the Scheduler an appropriate solver for the 

subproblems in the decomposition approach presented in Chapter VI. 
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VI.  Multi-Project Scheduling Through Decomposition 

Overview 

The Multi-Modal, Resource-Constrained, Multi-Project Scheduling Problem with Generalized 

Precedence and Expediting Resources (MRCMPSP-GPR/EXP) concerns scheduling a 

hierarchically structured, multi-project program.  At the lower level of the hierarchy are P projects.  

Each project is composed of a set of multi-modal activities which are related by generalized 

precedence and which compete for limited renewable and nonrenewable project-level resources.  

Project-level resources are wholly controlled and allocated by the project.  Each activity in a 

project may, in addition, require some quantity of limited renewable and nonrenewable resources 

which are common to the projects (program-level resources).  Project activities may also be related 

through generalized precedence to activities in other projects. 

At the upper level of the hierarchy is the program, which controls and allocates the program-

level resources (or those resources common to the projects) and which deconflicts any activity start 

times that violate the program-level generalized precedences.  The objective of the problem is to 

minimize total program costs, which may, in some cases, result in schedules which would be 

suboptimal at the project-level if the projects had been treated as independent problems, free of 

program-level considerations. 

The MRCMPSP-GPR/EXP could be modeled and solved as a single super project using the 

approach developed in Chapter V.  However, as the size of the program increases, so does the 

difficulty in scheduling a program as a single super project.  Decomposition of related multi-

project problems, by contrast, has proven to be a successful approach for dividing and conquering 

such problems (e.g., Deckro et al., 1991; Van Hove, 1998).  The decomposition of multi-project 

programs also lends itself to valuable economic interpretations, such as those proposed by Baumol 

and Fabian (1964) and Lasdon (1970). 

The approach developed in this chapter decomposes the multi-project MRCMPSP-GPR/EXP 

into a number of smaller, independent subproblems (the individual projects) and a single master 

problem (the program).  The master problem adjudicates the competing demands of the 

subproblems, which include the requirements for common resources and time slots in which to 

schedule activities. 
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Each subproblem is solved to find a set consisting of the k-best solutions (in terms of objective 

function value) to that problem.  When all of the subproblems have been solved, the sets of best 

solutions are passed up to the master problem which attempts to identify one solution from each 

subproblem, the combination of which is feasible and optimal to the original problem.  Chapter V 

developed a specialized algorithm for generating the k-best solutions for the subproblems.  This 

chapter focuses on the mechanics of the multi-project decomposition and on solving the master 

problem. 

As with the subproblems, the approach for solving the master problem permits the generation 

of k-best solutions to the master problem.  As presented in Theorem 6-1, under certain conditions 

an optimal solution to the master problem is optimal to the original problem.  Other than the 

optimal solution, however, the k-best master problem solutions are not necessarily the k-best 

solutions to the original problem.  It is possible to set k = 1 to find only one optimal solution, if 

desired. 

The basic decomposition algorithm is first presented, followed by a number of acceleration 

schemes.  Comprehensive testing, which focuses on issues such as the benefit of the acceleration 

schemes and the speed of the decomposition algorithm versus solving the problem as a single 

project using the algorithm developed in Chapter V, is then detailed.  

Decomposition Approaches in the Literature 

One of the earlier decomposition approaches in the literature came from the work of Dantzig 

and Wolfe (1960).  Dantzig and Wolfe developed a decomposition approach for linear 

programming (LP) which exploits the block-angular structure exhibited by many problems to 

subdivide the problem into smaller subproblems that can be solved independently.  A master 

problem coordinates the solution process through Lagrangian multipliers which act as prices 

charged to the subproblems for the use of resources that are common to the subproblems.  The 

master problem searches for the optimal mix (convex combination) of subproblem solutions that is 

optimal to the original problem. 

The Dantzig and Wolfe decomposition approach has been used successfully by Wiley (1996) 

and Wiley et al. (1998) for the Multi-Project Scheduling Problem (MPSP).  The objective of the 

MPSP is to minimize the cost or duration of a multi-project program by crashing or extending 

some of its activities.  However, activity crashing is tied to specific limited resources.  That is, for 

every time period an activity is crashed, an additional amount of each resource is consumed.  Since 



 6-3

these resources are limited, so is the amount of crashing possible.  The MPSP addresses the multi-

project problem at a high enough level of aggregation that the variables can be assumed to be 

continuous.  (The continuity of variables is a basic assumption of Dantzig-Wolfe Decomposition.)   

As a result, the Dantzig-Wolfe Decomposition approach for the MPSP has limited direct 

applicability to the MRCMPSP-GPR/EXP where the mathematical programming formulation 

dictates the use of zero-one variables.  Nevertheless, their use of decomposition for multi-project 

scheduling is one of the few in the literature and adds to the theoretical basis upon which 

decomposition methodologies, in general, are built. 

Sweeney and Murphy (1979) present a decomposition principle which is similar to Dantzig-

Wolfe decomposition in that it exploits the block-angular structure of large problems to decompose 

them into a set of smaller, easier-to-solve problems.  The main difference is that Sweeney-Murphy 

Decomposition, relying on the principle of Lagrangian relaxation, is designed for problems with 

integer variables, while Dantzig-Wolfe Decomposition assumes continuous, linear variables.  The 

subproblems are solved to calculate a set of best solutions for each subproblem.  These sets of best 

solutions are passed to the master problem which attempts to identify one solution from each 

subproblem which, when combined, are both feasible and optimal to the original problem.  If a 

combination of solutions cannot be identified, additional solutions are generated from the 

subproblems and fed to the master problem.  This process continues iteratively until an optimal 

solution is obtained. 

Deckro et al. (1991) use the Sweeney-Murphy Decomposition approach to solve an instance of 

the Resource-Constrained, Multi-Project Scheduling Problem (RCMPSP).  In solving their 

problem, Deckro et al. deal with resource constraints exclusively at the master level.  The resulting 

subproblems are simple resource-unconstrained, single-project scheduling problems (the optimal 

solution can be found using the standard Critical Path Method).  A modified zero-one 

programming code was used to find the best solutions to the subproblems, as well as to solve the 

master problem. 

Van Hove (1998) uses Sweeney-Murphy Decomposition to solve the Generalized, Multi-

Modal, Resource-Constrained Multi-Project Scheduling Problem (GMRCMPSP).  In his 

formulation of the GMRCMPSP, subproblems (individual projects) contain generalized 

precedences with minimal lags, renewable resources, and nonrenewable resources.  The master, or 

program-level, problem contains only nonrenewable resources.  Consequently, the master problem 
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consists of selecting one solution from each subproblem which is feasible to the program-level 

nonrenewable resource constraints and that minimizes the program makespan.  The decomposition 

approach proved very successful to Van Hove’s problem, allowing solution of a problem with 8 

subproblems, or projects, and a total of 116 activities. 

Sweeney-Murphy Decomposition 

Because of recent success using the Sweeney-Murphy Decomposition approach for solving the 

RCMPSP and the GMRCMPSP, the approach provides a solid basis for solving the multi-project 

MRCMPSP-GPR/EXP.  This section presents the basic Sweeney-Murphy Decomposition 

approach, discusses the choice of how many solutions to generate from each of the subproblems, 

and develops alternative approaches for obtaining multipliers. 

Problem Decomposition.  Chapter III develops a complete zero-one formulation of the 

MRCMPSP-GPR/EXP.  The block-angular structure of the problem takes the form in Figure 6-1. 

Note that constraints (3) consist of constraints which pertain to individual projects, while 

constraints (2) are the coupling constraints which adjudicate the demands made on the program by 

the projects.  Using traditional Lagrangian relaxation methods (Geoffrion, 1974), the problem is 

decomposed into P independent subproblems, ? ??pSP , shown in Figure 6-2. 

The multipliers, ? , in ? ??pSP  weight the objective functions of the subproblems in an attempt 

to enforce the program-level constraints.  In this way, the program influences the scheduling 

decisions made at the project level.  If the multipliers are zero, the projects are scheduled without 

regard for program-level constraints. 

 Once the subproblems have been solved to find the k-best solutions to each problem, the 

solutions are passed up to the program level where they are evaluated in a search for a combination 

which is feasible and optimal to the original problem.  The master problem, (MP), takes the form 

in Figure 6-3. 

Note that for any given p and any given k, k
ppyA  is a constant.  (MP) is solved to find an 

optimal solution vector, *? , which identifies the optimal combination of subproblem solutions.  If 

k is large enough so that all feasible solutions to each subproblem are included in problem (MP), 

then (MP) is equivalent to the original problem, (P) (Sweeney and Murphy, 1979: 1130).  Solving 

(MP), then, provides an optimal solution to (P).  If (MP) does not contain all subproblem solutions 



 6-5

(the number of which could be intractable), then (MP) is a restriction of (P).  Sweeney and Murphy 

prove, however, that under certain conditions, an optimal solution to (MP) is optimal to (P) 

(Sweeney and Murphy, 1979: 1131).   
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where 

pNA represents the program-level precedence constraint coefficients, 

pHA  represents the program-level expediting resource coefficients, 

pNB represents the project-level precedence constraint coefficients of project p, 

pHB  represents the project-level expediting resource coefficients of project p, 

pNx  represents the zero-one variables associated with the activities of project p, 

pHx  represents the integer variables associated with the expediting resources of project p,  

p, Pp ??1 , are indices representing the P projects / subproblems, and 

P + 1 is the index representing the program. 

Figure 6-1. Block-Angular Structure 
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where 

µ  are Lagrangian multipliers associated with the coupling constraints (2) 

pNA represents the program-level precedence constraint coefficients, 

pHA  represents the program-level expediting resource coefficients, 

pNB represents the project-level precedence constraint coefficients of project p, 

pHB  represents the project-level expediting resource coefficients of project p, 

pNx  represents the zero-one variables associated with the activities of project p, 

pHx  represents the integer variables associated with the expediting resources of project p,  

p, Pp ??1 , are indices representing the P projects / subproblems, and 

P + 1 is the index representing the program. 

Figure 6-2. Sweeney-Murphy Subproblem 

 

A lower bound, ? ?µLB , on the optimal solution to (P) can be obtained as the combination of 

best solutions from each subproblem and is given by the following equation: 
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Master Problem 
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where 

?pK  the number of feasible solutions of Subproblem p, 

?k
py  a rank-ordered feasible solution k of Subproblem p, 

?? k
p  1 if solution k of Subproblem p is selected; 0, otherwise. 

Figure 6-3. Sweeney-Murphy Master Problem 
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to be the difference between the worst solution to subproblem p and the best solution to 

subproblem p.  Optimality conditions are given in the Sweeney-Murphy Optimality Theorem, 

provided as Theorem 6-1. 

 

Theorem 6-1. Sweeney-Murphy Optimality Theorem  (Sweeney and Murphy, 1979: 1131) 
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 This is a contradiction since it was assumed that UBz ? .  Therefore, 
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The Sweeney-Murphy Optimality Theorem hinges upon the identification of the k-best 

solutions to each subproblem.  The Scheduler presented in Chapter V is designed to find the k-best 

solutions to the subproblems and is used for that purpose.  One important consideration, though, 

that is neither discussed by Sweeney and Murphy nor addressed yet in this discussion, is the 

possibility of multiple solutions of equal value.   

The Sweeney-Murphy Optimality Theorem shows that, under specific conditions, no solution 

not already in the set of k-best solutions can contribute to a better solution to the original problem.  

This can be true, though, only if the solutions already in the set of k-best are strictly better than the 

solutions not in the set.  If a solution not in the set has a value equal to that of the k-th best 

solution, then the k-th best solution cannot be used in the calculation of p?  which is used in the 

optimality test.  Suppose that a set of k-best solutions has been generated and that a solution exists 

that is not in the set but which has a value equal to that of the k-th best solution.  Since the set 

contains only k solutions, it is rather arbitrary as to whether the k-th best solution currently in the 

set or the alternate solution of equal value should be included in the set.  It is entirely possible that 

including the alternate solution in the set would lead to a better solution than that possible with the 

current k-th best solution.  Consequently, as subproblems are solved, if a solution of equal value to 

the k-th best is dropped from the set, then p?  is calculated using, not the value of the k-th best 
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solution (i.e., the worst solution in the set), but the value of the next worst solution in the set.  

Specifically, if Solutions k-1, k-2,… , k-n (n < k) all have the same objective function value as the 

k-th best solution and if Solution k-n-1 has a better objective function value than the k-th best 

solution, then the objective function of Solution k-n-1 is used to calculate p? .  If all solutions of 

equal value to the k-th best solution are in the set, then p?  is calculated using the value of the k-th 

best solution. 

Solving the Subproblems.  The first step in the Sweeney-Murphy Decomposition process is 

solving the subproblems to find their respective k-best solutions.  The decomposition of the multi-

project MRCMPSP-GRP/EXP leads to subproblems which are instances of the single-project 

MRCPSP-GRP/EXP, which can be solved using the approach developed in Chapter V.  This is 

true with one exception: Subproblem P+1. 

While Subproblems 1 through P are actual single projects, Subproblem P+1 is of an entirely 

different nature.  Subproblem P+1 consists of two types of variables: (1) the variable representing 

the execution time of the program-level terminal activity and (2) the variables representing the 

program-level expediting resources.  These variables appear in the coupling constraints of both (P) 

and (MP) to (1) tie the program completion time to the scheduled execution times of the other 

activities and (2) determine the quantity of program-level expediting resources required to make a 

combination of solutions from Subproblems 1 through P (the real project subproblems) resource 

feasible. 

Subproblem P+1 contributes to the program-level objective function by assessing a penalty 

against the program based on the execution time of the program-level terminal activity (the 

program completion time) and by charging the program for the program-level expediting resources 

used by the projects. 

When separated from the coupling constraints, though, the independent Subproblem P+1 

becomes a rather trivial problem (see Chapter III for the zero-one formulation).  Its constraints 

consist exclusively of the upper bound, D (program horizon), on the program completion time and 

the upper bounds on expediting resource use.  Consequently, regardless of the penalty associated 

with program completion, or the cost of expediting resources, or even the choice of µ , the optimal 

solution to Subproblem P+1 will always be zero for all variables.  Of  course, this optimal is 

infeasible to (MP), and thus (P), for any program with a non-zero duration (a basic assumption).  
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Like the other subproblems, a set of k-best solutions could be generated for Subproblem P+1, but 

this would undoubtedly require an extremely large k just to provide a solution that makes (MP) 

feasible. 

Another option for dealing with Subproblem P+1 is to generate its best solutions on the fly.  

This approach is suggested by Sweeney and Murphy for subproblems that are rich in near-optimal 

solutions (Sweeney and Murphy, 1979: 1134).  Simply stated, rather than contributing a set of k-

best solutions from which the master problem can draw, the subproblem is incorporated directly 

into a revised master problem, (MP2) (shown in Figure 6-4). 

Solving the Master Problem.  The Revised Master Problem (MP2) is solved using an implicit 

enumeration algorithm.  Implicit enumeration is used primarily for two reasons.  First, the 

procedure used to construct master problem solutions allows for quick and efficient fathoming of 

large sets of infeasible or dominated subproblem solution combinations.  Second, the algorithm 

efficiently produces a set of k-best solutions to the master problem. 

The algorithm attempts to build feasible master problem solutions by combining solutions from 

the subproblems.  Starting with the first solutions of each subproblem, the algorithm moves from 

subproblem to subproblem, adding on a new subproblem solution until either (1) one solution from 

each subproblem has been combined to form a complete, feasible solution to the master problem or 

(2) at some point in the building process, the current partial solution is found to be infeasible or 

dominated by the k-th best solution to the master.  In either case, the algorithm backtracks, first to 

untried solutions to the current subproblem, then to previous subproblems and their untried 

solutions. 

When a complete, feasible solution to the master problem is found, it is compared against the 

current k-th best solution to the master.  If the new solution is at least as good, it is added to the 

solution array and the k-th best solution is removed.  Complete solutions are stored in a k x (n +1) 

x 2 array, where k is the number of best solutions desired and n is the number of activities in the 

problem.  For each activity, the solution array stores two values: (1) its execution mode and (2) its 

start time.  The objective function value is stored in Row 0 of the array.  The solution array is 

initialized with large values. 

Note that while the above approach yields the k-best solutions to (MP), there is no guarantee 

that these are the k-best solutions to (P).  The Sweeney-Murphy Optimality Conditions guarantee 

only that the best solution to (MP) is optimal to (P).  The k-best solutions to (MP) provide k-good 
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solutions to (P), but these are not the k-best solutions to (P) unless all feasible solutions to the 

subproblems are included in (MP); in other words, if (MP) equals (P).   
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where 

?pK  the number of feasible solutions of Subproblem p, 

?k
py  a rank-ordered feasible solution k of Subproblem p, 

?? k
p  1 if solution k of Subproblem p is selected; 0, otherwise. 

Figure 6-4. Revised Sweeney-Murphy Master Problem 

 

As an example, consider the four-project problem described in Appendix F.  This problem was 

solved to find the 1000-best solutions using the Scheduler and then re-solved to find the 1000-best 

solutions using the decomposition approach.  In the case of the decomposition approach, each 

subproblem provided (to the master) a set of their 1000-best solutions, leading to a master problem 
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with a total of 10004 possible subproblem combinations.  Both approaches found the same optimal 

(a single optimal in this case) with an objective function value of 19,680.  However, the 1000-th 

best solution from the Scheduler had a value of 24,752 while the 1000-th best solution from the 

decomposition approach had a value of 32,760.  In fact, the set of 1000 solutions passed up from 

each of the subproblems to the master problem did not contain a combination leading to a solution 

of 24,752 (the 1000-th best Scheduler solution).  The closest solutions found by the decomposition 

approach were 24,704 (ranked 99) and 24,769 (ranked 100). 

Consequently, there is a tradeoff between the time required to obtain a set of k solutions and 

the quality of those solutions.  If finding an optimal solution quickly is the primary goal, and 

obtaining a set of good alternative solutions is only secondary, then the decomposition approach 

should be used.  If, however, a set of k-best solutions is required, then the Scheduler from Chapter 

V is a more appropriate solution approach.  

Assumptions.  Before proceeding to the notation and description of the Decomposition 

Algorithm, note the following assumptions. 

1. Subproblems corresponding to the projects, Problems ? ??pSP , are solved in the order in 

which they are numbered. 

2. Subproblem solutions are rank ordered, 1?k being an optimal. 

Notation.  The following notation is used in the Decomposition Algorithm. 

Problem Types: 

 ? ??pSP  = the subproblem corresponding to Project p 

Indices: 

 i = a project activity 

 mi = the mode of activity i 

 si = the scheduled start time of activity i 

 pk  = the counter indicating the current solution of Subproblem p 
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Solution Parameters: 

 P  = the total number of subproblems 

 pK  = the number of best solutions from Subproblem p 

 0K  = the desired number of best solutions to the master problem 

 pkz  = the objective function value of the k-th solution to Subproblem p 

 kZ  = the objective function value of the k-th solution to the master problem (MP) 

 p?  = the difference between the worst and best solutions to Subproblem p 

 µ  = the Lagrangian multipliers associated with the coupling constraints 

Activity Sets: 

 Oi = the set of activities which precede activity i 

 Ni = the set of activities which have a direct start-start lag relationship with activity i 

 

 
pkM  = the set of mode assignments associated with solution pk  

 
pkS  = the set of start time assignments associated with solution pk  

Resource Sets: 

 RQ  = the set of program-level renewable resources 

 NQ  = the set of program-level nonrenewable resources 

Time-Related Parameters: 

 
iimd  = the duration of activity i in mode m 

 min
ij?  = the minimal start-start lag time between activities i and j 

 max
ij?  = the maximal start-start lag time between activities i and j 

Cost Parameters: 

 N
k p

c  = cost of nonrenewable expediting resources required by pk  

 R
k p

c  = cost of renewable expediting resources required by pk  

 pC  = the accumulated cost of the current solutions of Subproblems 1 through p  
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Resource-Related Parameters: 

 R
qimi

r  = the units of renewable resource q required by activity i in mode mi 

 R
pqtR  = the units of renewable resource q remaining in time t after projects 1 through p have 

been added to the program schedule 

 R
pqtH  = the units of expediting, renewable resource q remaining in time t after projects 1 

through p have been added to the program schedule 

 

 N
qimi

r  = the units of nonrenewable resource q required by activity i in mode mi 

 N
pqR  = units of nonrenewable resource q remaining after projects 1 through p have been 

added to the program schedule 

 N
pqH  = the units of expediting, nonrenewable resource q remaining after projects 1 through p 

have been added to the program schedule 

 

 N
qk p

r  = the total demand by solution pk for nonrenewable resource q  

 R
qtk p

r  = the total demand by solution pk for renewable resource q at time t 

Decomposition Algorithm.  The Decomposition Algorithm is now outlined, followed by a 

narrative description of the scheme. 

  

Decomposition Algorithm 

Step 0 Initialization. 

 Obtain µ , an initial value of µ . 

 Set ?kZ  an arbitrarily large number (999999 in this study) for 01 Kk ?? . 

 Set pK  = the initial number of solutions to generate for Subproblems p, Pp ??1 . 

 Set ??  an arbitrarily large number (e.g., 999999). 
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 Set ?p?  an arbitrarily small, non -negative number (e.g., 0) for Pp ??1 . 

Step 1 For p such that ??p? , solve ? ?µpSP  to obtain the pK -best solutions for 

Subproblems p, Pp ??1  (the project-related subproblems).  For each subproblem, 

record if a solution equal to the k-th best is dropped from the set of k-best. 

Step 2 If, for subproblem p ( Pp ??1 ), a solution with value equal to that of solution pK  is 

dropped from the set of pK -best solutions, let ? ? 1max ppKpkpkkp zzzz
p
???? .  

Otherwise, let 1ppKp zz
p
??? . 

Step 3 Record ? ? ?
?

?
P

p
pzLB

1
1µ .  Set p = 0 and 00 ?C . 

Step 4 Let p = p + 1 and let 0?pk . 

Step 5 Let 1?? pp kk .  If pp Kk ? , go to Step 15. 

Step 6 Test for Dominance.  Test whether 1?pC  plus the objective function value of 

subproblem solution pk , 
pkz , is dominated by the value of the 0K -best master 

problem solution, 
0KZ .  Thus, if 

pkpK zCZ ?? ? 10
, subproblem solution pk  cannot 

lead to an improved master solution, so go to Step 5. 

Step 7 Nonrenewable Resource Feasibility.  Determine if pk  is feasible to the nonrenewable 

resource constraints (i.e., the sum of regular and expediting nonrenewable resources is 

sufficient for the nonrenewable resource demand of solution pk ).  Let ?
?
?

?
p

pki

ip

J

Mm
i

N
qim

N
k rr

1

 

be the total demand by solution pk for nonrenewable resource q.  If 

NN
qp

N
qp

N
k QqHRr

p
???? ??  11 ,,, , then pk  is nonrenewable-resource feasible.  If not 

feasible, go to Step 5. 
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Step 8 Test for Dominance.  Test whether 1?pC  plus the objective function value of 

subproblem solution pk , 
pkz , plus the cost of nonrenewable expediting resources 

required by pk , N
k p

c , is dominated by the value of the 0K -best master problem 

solution, 
0KZ .  Thus, if N

kkpK pp
czCZ ??? ? 10

, subproblem solution pk  cannot lead 

to an improved master solution, so go to Step 5.  

Step 9 Generalized Precedence Feasibility.  Determine if subproblem solution pk  is feasible 

as to the program-level generalized precedences.  For each activity i in p which has a 

generalized precedence relationship with an activity j in any of projects 1 through p-1, 

the following conditions must be true for feasibility.  If not feasible, go to Step 5.  

(Note: these are the same generalized precedence conditions used in the Scheduler and 

discussed in Chapter V.) 

 0?
iimd  0?

iimd  

 

0?
jjmd  

ijmji Ojdss
j

????  ,  

ijiji Cjss ????  ,min?  

ijiji Cjss ????  ,max?  

ijmji Ojdss
j

?????  ,1  

ijiji Cjss ?????  ,1min?  

ijiji Cjss ?????  ,1max?  

 

0?
jjmd  

iji Ojss ????  ,1  

ijiji Cjss ?????  ,1min?  

ijiji Cjss ?????  ,1max?  

iji Ojss ???  ,  

ijiji Cjss ????  ,min?  

ijiji Cjss ????  ,max?  

 

Step 10 Renewable Resource Feasibility.  Determine if pk  is feasible to the renewable resource 

constraints (i.e., the sum of regular and expediting renewable resources in each period 
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is sufficient for the renewable resource demand of solution pk ).  Let 

? ?
?

?
?

???
?

?
p

pki

pki
iimii

ip

J

Ss
Mm
dsst

i

R
qim

R
qtk rr

1,
1

 be the total demand by solution pk for renewable resource q in time 

period t.  If ? ?
pppp kJJ

RR
qtp

R
qtp

R
qtk SssstsQqHRr ??????? ??  , , , , 11,1,1 , then pk  is 

renewable-resource feasible.  If not feasible, go to Step 5. 

Step 11 Adjust Resources and Costs.  The new partial master solution schedule formed by 

adding subproblem solution pk  is feasible and may lead to an improved master 

solution.  Adjust program-level resource availabilities and the master schedule cost as 

follows: 

? ? N
N

qp
N

qk

N
qp

N
qk

N
qk

N
qpN

pq Qq
Rr
RrrR

R
p

pp ??
??
?
?
?

??
?
?
?

?
??

?
?

??  
 if 0
 if 

1

11 ,
,

,,  

? ? N
N

qp
N

qk
N

qk
N

qp
N

qp

N
qp

N
qkN

pq Qq
RrrRH
Rr

H
pp

p ??
??
?
?
?

??
?
?
?

???
?

?
???

?  
 if 
 if 0

111

1 ,
,,,

,  

? ? ? ?
ppp

p

pp

kJJ
R

R
qtp

R
qtk

R
qtp

R
qtk

R
qtk

R
qtpR

pqt SssstsQq
Rr
RrrR

R ?????
??
?
?
?

??
?
?
?

?
??

?
?

??      
 if 0
 if 

11
1

11 ,,,,
,

,,  

? ? ? ?
ppp

pp

p

kJJ
N

R
qtp

R
qtk

R
qtk

R
qtp

R
qtp

R
qtp

R
qtkR

pqt SssstsQq
RrrRH
Rr

H ?????
??
?
?
?

??
?
?
?

???
?

?
???

?      
 if 
 if 0

11
111

1 ,,,,
,,,

,

 

? ? R
k

N
kpp pp

ccCC ??? ? 1  

Step 12 Test for Dominance.  Test whether pC  is dominated by the value of the 0K -best 

master problem solution, 
0KZ .  Thus, if pK CZ ?

0
, subproblem solution pk  cannot 

lead to an improved master solution, so remove subproblem solution pk  from the 
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current partial solution , adjust resource availabilities and the partial solution cost, and 

go to Step 5.  

Step 13 If subproblem p is NOT the last subproblem, Pp ? , go to Step 4.  Otherwise, this 

complete solution is as good as the current 0K -best solution, so add this solution to the 

set of 0K -best and re-rank solutions. 

Step 14 Adjust Resources and Costs.  Remove subproblem solution pk  from the current master 

schedule.  Adjust resource availabilities and the master schedule cost.  Go to Step 5. 

Step 15 Backtrack by Subproblem.  Let 1?? pp .  If 1?p , go to Step 5. 

Step 16 Test for Optimality.  (Note that p = 0.)  Let 1ZUB ? .  Calculate ? ?µLBUB ??? .  If 

??p?  for Pp ??1 , then 1Z  is optimal.  Stop.  Algorithm complete. 

Step 17 1Z  is NOT optimal.  For p such that ??p? , increase pK , the number of solutions to 

generate for Subproblem p.  Go to Step 1. 

  

 

Step 0 of the algorithm is an initialization step.  In this step, an initial value of the Lagrangian 

multipliers, µ , are obtained using one of the methods described later in this chapter.  The method 

used to obtain the multipliers may affect the performance of the algorithm but does not impact the 

flow of the algorithm itself.   

Step 0 is also used to set initial values for four sets of variables.  The initial values for kZ , 

01 Kk ?? , are set to arbitrarily large numbers.  These numbers are replaced by the objective 

function values of feasible solutions to the master problem as these solutions are generated.  The 

initial values for pK , Pp ??1 , are set according to a scheme for choosing how many solutions 

to generate for each subproblem, also discussed later in the chapter.  Finally, a large value for ?  

and small values for p? , Pp ??1 , are set.  While these values are meaningless at this point in 



 6-21

the algorithm, they are set necessarily but simply to satisfy the condition in Step 1 which invokes a 

first-time solution of each subproblem to generate sets of k-best solutions. 

Step 1 comprises solution of the subproblems to generate sets of k-best solutions.  The first 

pass through this step requires that all subproblems be solved (hence, the initial values for the 

deltas set in Step 0), while subsequent passes through the step require the solution of only those 

subproblems which fail the optimality test of Steps 15 and 16. 

Step 2 calculates a (meaningful) p?  for each subproblem based on the solution sets generated 

in Step 1. 

Step 3 records the lower bound on the optimal solution to (P) as the sum of the optimal 

solutions to the subproblems.  This step also sets p = 0 and 00 ?C . 

Step 4 increments counter p by one so that in the first pass p = 1 and the algorithm begins 

constructing a solution to (MP) by adding a candidate solution from Subproblem 1.  (While this 

step identifies which subproblem is the current subproblem, the next step identifies which candidate 

solution from the current subproblem to add.)  pk  is also set to zero in this step. 

Step 5 increments pk  by one.  In the first pass through this step, pk  = 1 and the algorithm 

begins constructing a solution to (MP) by adding Solution 1 to Subproblem 1. 

As the algorithm builds a solution to (MP) by incrementally adding a solution from each 

subproblem, Step 6 tests whether or not the cost of the previous partial solution plus the objective 

function value of the candidate subproblem solution being added exceeds the objective function 

value of the k-th best solution currently recorded for (MP).  If so, the partial solution being 

constructed cannot lead to an improved solution to (MP), and the candidate solution to the current 

subproblem is fathomed by returning to Step 5 where the next candidate solution to the current 

subproblem is nominated.  Note that rejecting a candidate solution at this step requires no 

accounting for resources or costs, since no resources or costs have been charged yet for adding this 

solution.  Consequently, this simple dominance test saves potentially considerable time otherwise 

required for charging and subsequently refunding resources and costs for an unproductive 

candidate solution.  

If the test at Step 6 is passed, Step 7 determines if there are sufficient nonrenewable resources 

(regular plus expediting) available to add the candidate solution.  If not, the candidate solution is 

rejected by returning to Step 5.  Note that no resources or costs are charged at this step, either, in 
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order to save the time otherwise required to account for resources and costs associated with a 

solution which may be infeasible or unproductive. 

Step 8 builds upon the feasibility test in Step 7.  Step 7 determined that there are sufficient 

regular plus expediting nonrenewable resources available to make the candidate solution feasible.  

However, if expediting resources must be used, the cost of those resources may make the candidate 

subproblem solution too costly.  If so, the candidate solution is fathomed by returning to Step 5. 

Steps 9 and 10 continue testing the candidate solution by checking for precedence and 

renewable resource feasibility, respectively.  If at either step the candidate is determined to be 

infeasible, the solution is fathomed by returning to Step 5. 

Once the algorithm has reached Step 11, it has determined that the candidate solution to the 

current subproblem is feasible to the precedence constraints as well as to the renewable and 

nonrenewable resource limitations.  It has also determined that the cost of the previous partial 

schedule plus the objective function value of the candidate solution plus the expediting 

nonrenewable resource costs required to add the candidate solution do not exceed the currently 

recorded k-th best solution to (MP).  Therefore, Step 11 adds the candidate solution to the previous 

partial schedule by charging its resource requirements against the available resources and by 

adding its associated costs. 

Up to this point, however, no dominance tests of the candidate solution included the cost of 

expediting renewable resources.  Step 12, therefore, performs one final dominance test on the new 

partial solution which includes the cost of expediting renewable resources required by the candidate 

solution.  If the new partial solution cannot lead to an improved solution to (MP), the candidate 

solution is removed from the partial solution, resources and costs are adjusted, and the algorithm 

returns to Step 5 where the next candidate solution is considered. 

If the new partial solution is feasible and is not dominated by the k-th best solution to (MP), 

then Step 13 checks to see if a solution has been added by each subproblem.  If not, the algorithm 

returns to Step 4 where p is once again incremented by one and candidate solutions from the next 

subproblem are considered.  If a solution from each subproblem has been added, then the new 

partial solution is, in fact, a complete solution to (MP).  This solution is added to the set of 

solutions to (MP) and the set of solutions is re-ranked from best to worst. 

Once the complete solution has been recorded, the last subproblem solution to be added is 

removed (in Step 14) by adjusting resources and costs and returning to Step 5. 
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When returning to Step 5 from any other step, the next rank-ordered solution to the current 

subproblem becomes the next candidate solution.  If, however, all rank-ordered solutions to the 

current Subproblem p* have been checked in context of partial solution p*-1, then the algorithm 

proceeds to Step 15 where it backtracks by subproblem.  In other words, Subproblem p*-1 

becomes the current subproblem.  If p*-1 is greater than or equal to one, the algorithm returns to 

Step 5 where the next rank-ordered solution to Subproblem p*-1 becomes the new candidate 

solution.  In this way, the algorithm implicitly enumerates every possible combination of the 

subproblem solutions. 

If, at Step 15, p*-1 equals zero, then all combinations of subproblem solutions have been 

implicitly enumerated.  Therefore, an optimality test is performed to determine if an optimal 

solution found for (MP) is optimal to (P).  If so, the algorithm terminates successfully.  If not, pK  

for each subproblem p violating the optimality condition is increased (in Step 17), and the 

algorithm returns to Step 1 where larger sets of best solutions are generated for each of the 

violating subproblems.  This marks the beginning of the next iteration and the algorithm proceeds 

as before. 

Note that if the optimal is not found on the first iteration, the array of master solutions is not 

reinitialized to large numbers.  The solutions with which it was previously filled during the first 

iteration remain in the array.  This provides a tighter upper bound and faster fathoming for future 

iterations. 

Correction to Sweeney-Murphy Approach.  The solution approach proposed by Sweeney and 

Murphy, and implemented in the Decomposition Algorithm above, hinges upon iteratively adding 

subproblem solutions to the master problem until the optimality criterion (provided in the Sweeney-

Murphy Optimality Theorem) is met.  The use of the Sweeney-Murphy Optimality Theorem as the 

one and only stopping criterion suggests reliance on the theorem as a necessary condition for 

optimality.  Such use of the theorem, however, is inappropriate.  While the theorem provides a 

sufficient condition for optimality, it does not, in fact, provide a necessary condition (see counter 

example below).  In such cases, the algorithm may terminate without clearly indicating the 

optimality of the solution.  If a given problem meets the sufficient condition in Step 12 of the 

Decomposition Algorithm, the algorithm stops with the result that the current optimal solution to 

(MP) is optimal to (P).  If, on the other hand, the given problem does not meet the sufficient 

condition in Step 12, one cannot say if the current optimal solution to (MP) is optimal to (P) or not.  
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One can continue with further iterations of the algorithm in hopes that the sufficient condition will 

eventually be met, but one of three realities will certainly be faced: 

1. The algorithm iterates to a point where the sufficient condition is met. 

2. The algorithm terminates prematurely without the sufficient condition met and without 

knowing if the current optimal to (MP) is optimal to (P).  However, the current optimal to 

(MP) is feasible to (P), since (MP) is a restriction of (P), so the optimal to (MP) may be 

treated as a heuristic solution to (P). 

3. The algorithm is allowed to iterate to a point at which all feasible solutions of all 

subproblems have been generated, but the sufficient condition is still not met.  In this case, 

(MP) is equivalent to (P) and one can conclude that the optimal to (MP) must be optimal 

to (P), but this determination is made without the Sweeney-Murphy Optimality Theorem 

being met. 

In the third case above, optimality of (P) can be established without the sufficient condition 

being met, but the cost of generating all solutions to all subproblems may be high (perhaps higher 

than solving the problem without decomposition).  One would, therefore, like to find a tighter 

necessary condition than the generation of all subproblem solutions.  This is a subject for further 

investigation. 

Consider, now, the following example which counters the use of the Sweeney-Murphy 

Optimality Theorem as a necessary condition for optimality.  The example consists of a four-

project program (see Figure 6-5).  Each project has a dummy start activity (AS, BS, CS, and DS, 

respectively).  The dummy start activities have no duration, no cost, and use no resources.  Each 

project also has two (numbered) activities with durations, costs, and resource use (project- and 

program-level).  Each project has a terminal activity (AT, BT, CT, and DT, respectively) which 

has no duration and uses no resources, but each terminal activity has a cost which represents the 

project completion cost.  Finally, the projects are tied together by a dummy start activity (S) and a 

terminal activity (T), neither of which has a duration or uses resources.  However, terminal activity 

(T) has a cost representing the program completion cost. 

The data in Table 6-1 show that each numbered activity has a duration of one unit.  Each 

numbered activity also requires one unit of a renewable resource specific to their respective 

projects.  There is sufficient project-level resource availability that project-level resources do not 

limit the scheduling process (any precedence feasible project schedule is also resource feasible). 
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AS A1 A2 AT

BS B1 B2 BT

CS C1 C2 CT

DS D1 D2 DT

S T

 

Figure 6-5. Sweeney-Murphy Optimality Theorem Counterexample Diagram 

 

Table 6-1. Sweeney-Murphy Optimality Theorem Counterexample Data 

Project Activity Duration Early 
Start (ES) 

Base 
Cost  

@ ES 

Per Period 
Incremental 

Cost 

Project 
Renew 

Resource 

Program 
Renew 

Resource 
        

A A1 1 1 1 1 1 1 
 A2 1 2 1 1 1 1 
 AT 0 2 1 2 0 0 
      Limit 2  
        

B B1 1 1 1 1 1 1 
 B2 1 2 1 1 1 1 
 BT 0 2 1 2 0 0 
      Limit 2  
        

C C1 1 1 1 1 1 1 
 C1 1 2 1 1 1 1 
 CT 0 2 1 2 0 0 
      Limit 2  
        

D D1 1 1 1 1 1 1 
 D2 1 2 1 1 1 2 
 DT 0 2 1 1 0 0 
      Limit 2  
        

"T" T 0 2 1000 1000 0 0 
      Limit 0  
       Limit 4 
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When the problem is decomposed, each project becomes a separate subproblem.  The only 

limiting constraints within each subproblem are the precedence constraints (e.g., A1 precedes A2, 

A2 precedes AT).  The cost of a subproblem schedule is the numbered activity costs (which depend 

on when the activities are scheduled) and the project completion cost. 

A fifth subproblem is composed of the program terminal activity.  The only constraint within 

this subproblem (when severed from the program-level constraints) is that activity T must occur no 

earlier than its early start time (Time 2). 

Figure 6-6 shows three alternative schedules for the program.  Note that the representation of 

the project and program terminal activities is a straight vertical line lying between two time 

periods.  The line actually falls at the back side of the time unit with which it is associated.  For 

example, if the program terminal activity T occurs at its early start time of 2, the line representing 

the activity is on the border of time units 2 and 3.  Note also that the program horizon is 8 (the sum 

of all non-zero duration activities). 
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Sch 
Cost 1 2 3 4 5 6 7 8

Sch 
Cost 1 2 3 4 5 6 7 8

Sch 
Cost 1 2 3 4 5 6 7 8

1 1 7 1 d = 24 1 1
1 1 7 1 1 1
1 13 1

1 1 7 1 d = 24 1 1
1 1 7 1 1 1
1 13 1

1 1 7 1 d = 24 1 1
1 1 7 1 1 1
1 13 1

1 1 7 1 d = 18 1 1
1 2 7 2 2 2
1 7 2

1000 7000 d = 6000 2000

Res Demand 4 5 0 0 0 0 0 0 0 0 0 0 0 0 4 5 Res Demand 4 3 2 0 0 0 0 0
Res Avail 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Res Avail 4 4 4 4 4 4 4 4

  ^ Violation Violation  ^  
LB = 1012 UB = 2014

UB - LB = 2014 - 1012 = 1002 > d for Projects A through D

Time Period

Program Resource Limits
(Not Enforced) (Not Enforced)

Time Period

Program Resource Limits
(Enforced)

Time Period

Program Resource Limits

Optimal Program Schedule
("Dependent" Projects)

Optimal Project Schedules
("Independent" Projects)

Worst Project Schedules
("Independent" Projects)

 

Figure 6-6. Sweeney-Murphy Optimality Theorem Counterexample Chart 

 

The first set of schedules in Figure 6-6 are the optimal subproblem solutions if the program-

level constraints are relaxed.  Each activity starts at its early start time (including activity T).  The 

total cost of this set of solutions is 1012; this is the lower bound LB.  The second set of schedules 

is the worst subproblem solutions where every activity starts at its late start time.  The importance 

of this set of solutions is that it defines the maximum possible value for the ?  of each subproblem 

(the worst solution minus the best solution).  These values are ?  = 24, 24, 24, 18, and 6000, 

respectively.  Note that ?  for Subproblem D is less than that of Subproblems A, B, and C, because 

the cost for delaying project completion is only 1 per time unit rather than 2 per time unit. 

When program-level constraints are now considered, the set of best solutions to the 

subproblems do not form a feasible combination.  Note that the demands for the program-level 

resource are marked inside the gray boxes representing the activities.  The problem is that the total 
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demand for the program-level resource in Time 2 exceeds the availability of four.  To resolve this 

conflict, any of activities A2, B2, C2, or D2 could be shifted one unit to the right.  The optimal 

program schedule results from shifting Activity D2, because the cost of doing so is only two (one 

for delaying D2 and one for delaying DT), while the cost of delaying any of the other activities is 

three (only one for delaying the activity itself, but two for delaying completion of its corresponding 

project). 

Assuming all subproblem solutions are generated, the total cost of the optimal schedule to 

(MP) and to (P) is 2014.  This is UB.  So LBUB ???  is 1002 which is larger than all 

subproblem ?  except for subproblem “T.”  Hence, the condition of the Sweeney-Murphy 

Optimality Theorem is not met, but an optimal solution has been found. 

Choice of k.  One choice that must be made to implement Sweeney-Murphy Decomposition is 

the number of best solutions, k, to pass from each subproblem to the master problem.  The smaller 

k is, the less time spent generating the set of subproblem solutions.  If k is small, the master 

problem also takes less time to enumerate the combinations of subproblem solutions.  Therefore, k 

should ideally be as small as possible, while assuring optimality.  

On the other hand, though k should ideally be chosen as small as possible, the lower k is, the 

higher the possibility that the algorithm may not find an optimal to (P) in the first iteration.  If the 

algorithm has to conduct subsequent iterations, overall solution time could increase significantly.  

The only leveraging provided by the previous iteration is that the previous subproblem solutions 

can be used to partially initialize the arrays of subproblem solutions.  If 1k  subproblem solutions 

were generated in the first iteration and 12 kk ?  subproblem solutions are to be generated in the 

second iteration, then the first 1k  rank-ordered positions in the solution array are filled with the 

previous set of best solutions and the remaining 12 kk ?  positions are filled with an appropriately 

large value (e.g., 999999).  Since fathoming of branches in the subproblem solver is based on the 

value of the k-th best solution (an arbitrarily large value), even the leveraging from the previous 

solutions is likely to be minimal.  Consequently, the time required to solve the subproblem in 

subsequent iterations is most likely at least as long as the time to solve the subproblem in the first 

iteration. 

Another compounding factor is the possibility that only a subset of subproblems may need to 

be resolved at a subsequent iteration, if any.  As a result, an a priori attempt to find just the right 
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value of k is a difficult task at best.  The right choice is a function of the time required to solve the 

subproblems for a smaller set of solutions versus a larger set, the probability that a subproblem 

will need to be resolved in a subsequent iteration (which also depends on the size of the set in the 

previous iteration), and the amount of duplicative effort to solve a subproblem again for a larger 

value of k.  Of course, all of these values (the time to solve the subproblems for varying sizes of k 

and the probability that the sets of subproblem solutions of some given size will provide an optimal 

combination) are dependent on the characteristics (network complexity, resource strength, etc.) of 

each subproblem and of the master problem.  The implementer of Sweeney-Murphy 

Decomposition, then, must choose the initial value of k based on experience, intuition, or empirical 

analysis if time allows.  An empirical analysis is provided in this study.  

Figures 6-7 and 6-8 (repeated from Chapter V) provide some insight into the time required to 

solve the subproblems for varying values of k.  Based on values of k of 1, 10, 100, and 1000, these 

figures show, respectively, the average time required per solution and the overall solution time for 

each k.  The marginal amount of time required to find one additional solution decreases 

significantly as k increases.  The resultant growth in overall solution time also flattens out.  If one 

is risk averse, preferring to solve each subproblem for a large enough k so that iteration is not 

necessary, then these results provide some assurance that if k is larger than minimally necessary, 

overall solution time does not suffer significantly. 
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Figure 6-7. Average Time Per Solution 
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Figure 6-8. Overall Average Solution Times Versus k 

 

For the risk prone who is willing to gamble multiple iterations to reduce initial subproblem 

solution time, their payoff depends on the structure of the master problem.  If the master problem 

contains no program-level constraints, then the optimal subproblem solutions form an optimal 



 6-31

solution to (P).  In this case, solving the subproblems for  a very small k would be preferable.  If, 

however, the master problem is highly constrained, then a large number of solutions from each 

subproblem may be required even to find a feasible combination, not to mention an optimal one. 

The section on testing, below, tests various schemes for choosing k based on the respective 

difficulty of subproblems and the master problem. 

Choice of Multipliers.  A second choice required for implementation of Sweeney-Murphy 

Decomposition is initial values for the Lagrangian multipliers.  Multipliers in the subproblems are 

a counterbalance to k.  The better the multipliers, the fewer the subproblem solutions required to 

find an optimal solution to (P).  The easier it is to generate the k solutions, the less important it is 

to find the optimal multipliers (Sweeney and Murphy, 1979: 1133). 

In the context of Lagrangian Relaxation, multipliers are used in the subproblem objective 

functions to weight the importance of the coupling constraints and the scarcity of resources.  If the 

multipliers are zero, then the coupling constraints are ignored when solving the subproblems.  If the 

multipliers are arbitrarily large, then the subproblems over-emphasize the coupling constraints, 

leading to a solution which may be harmful to the possibly competing interests of the subproblem.  

Good multipliers, by contrast, are most likely somewhere between zero and an arbitrarily large 

number.  Good multipliers influence the subproblems to provide solutions to the master problem 

which lead to tight bounds on the optimal solution to (P).  That is, ? ?µLBUB ???  is minimized. 

The value of µ  which maximizes ? ?µLB  and which, therefore, provides the best choice of µ  

is the solution to problem (D), the Lagrangian dual of (P) (shown in Figure 6-9). 

 

Lagrangian Dual of (P) 

Problem (D): 

? ? ? ?
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Figure 6-9. Lagrangian Dual of Original Problem (P) 

 

Sweeney and Murphy (1979: 1132) discuss the difficulty of solving (D) and suggest two 

alternative approaches for choosing multipliers.  Both are LP-based methods, using Lagrangian 
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duality theory common in the literature (e.g., Geoffrion, 1974; Fisher, 1981).  One approach for 

choosing µ  is to solve the LP relaxation of (P) and use the dual variables associated with the 

coupling constraints.  If it is inconvenient to solve the LP relaxation of (P), Sweeney and Murphy 

suggest initially setting 0µ ? , and then, after solving (MP) the first time, set µ to the dual 

variables associated with coupling constraints in the LP relaxation of (MP).  This second method is 

used by Sweeney and Murphy in a sample problem, as well as by Deckro et al. (1991).  

Unfortunately, neither approach can be used for the MRCMPSP-GPR/EXP. 

As previously mentioned, both approaches proposed by Sweeney and Murphy are LP-based.  

Neither the subproblems nor the master problem of the MRCMPSP-GPR/EXP are solved with LP-

based methods, so multipliers based on these approaches are not readily available.  Still, it is 

important to identify a means by which the master problem can influence the solutions provided by 

the subproblems.  For this, a more economic interpretation of the multipliers is in order. 

Lagrangian multipliers are the dual variables associated with the constraints of an LP.  When 

an LP is solved to optimality, the dual variables, also known as shadow prices, reflect the increase 

in the objective function value possible if the right-hand side of the associated constraint is raised 

by one unit.  That is, a shadow price is the marginal value of one additional unit of resource given 

the current optimal solution.  Hence, for binding constraints, shadow prices may be positive, 

reflecting the maximum amount the decision-maker should be willing to pay for an additional unit 

of resource.  For non-binding constraints, shadow prices are zero, because there is no value in 

purchasing more units of a resource which is already in excess.  The challenge in this study is to 

estimate shadow prices without solving an LP. 

Adding to the challenge of estimating shadow prices is the reality that the shadow prices must 

be estimated before the problem is initially solved.  In fact, the shadow prices need to be estimated 

in order to solve the problem.  This leads to the concept of provisional dual prices, proposed by 

Baumol and Fabian (1964).  Provisional dual prices reflect the marginal profitability of a resource 

when used as prescribed in the current solution, not necessarily the optimal solution.  The primary 

difference between these and regular duals is that these prices may be negative (Baumol and 

Fabian, 1964: 7). 

If the Dantzig-Wolfe Decomposition approach could be used for solving the MRCMPSP-

GPR/EXP, there would be an iterative process where the program sets initial prices that it charges 

the projects for program-level resources.  These prices are recalculated each time the master 
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problem is solved and these new prices are passed to the projects.  With Sweeney-Murphy 

Decomposition, good prices need to be initially estimated, especially since a single iteration would 

be ideal.  In this situation, the provisional dual prices are, in essence, a forecast of the value of 

resources, since they must be estimated even before an initial allocation is made. 

Since the goal of multipliers is to enable the program to impact the decisions made by the 

projects, Baumol and Fabian suggest that: 

The means to induce subdivisions to increase activities which produce external economies and 
to reduce activities which produce external diseconomies is accomplished by the addition to 
divisional earnings of a per unit subsidy or bonus of appropriate magnitude for every external 
economy yielding output, and a per unit penalty on those products which involve diseconomies.  
Baumol and Fabian (1964: 4) 

Substituting project for subdivision, projects should be rewarded for using resources available 

in excess and should be charged for using resources that are in high demand by other projects.  

Since project activities have multiple modes of execution, it is difficult to know a priori exactly 

how much of any given resource a project will demand.  Activities can also be scheduled in 

multiple time periods, so it is difficult to know when the resources will be demanded.  The 

remainder of this subsection is devoted to the proposition of four potential approaches for choosing 

multipliers, or provisional dual prices.  Each approach is tested in the next section. 

The first two approaches for choosing multipliers are not elegant, but they are valid 

approaches.  The first approach is to choose zero for all multipliers and the second approach is to 

choose an arbitrarily large value for the multipliers.  As previously discussed, neither of these 

approaches would be expected to perform well, but they do, in some sense, provide bounds by 

which other approaches can be evaluated. 

The third approach for choosing multipliers is based on the work of Nauss (1979).  To 

estimate the marginal benefit of resources in an IP, Nauss solves the IP to optimality and, then in 

turn, varies the right-hand side of each resource constraint by one unit and re-solves the problem.  

The estimated marginal benefit of a resource is then the difference between the optimal objective 

function value of the original problem and the optimal objective function value of the problem with 

the respective resource constraint varied.  Obviously, if the MRCMPSP-GPR/EXP could be solved 

to optimality easily enough to uses Nauss’ method directly, the whole purpose behind finding the 

multipliers in the first place would be moot.  Nauss’ concept, though, can be used. 

In what this work refers to as a Modified Nauss Approach (MNA), the original problem (P) is 

solved to find a feasible solution.  The Scheduler developed in Chapter V is applied to (P), but is 
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stopped before completion.  Termination of the Scheduler is triggered only after it finds at least one 

solution and has run for some user-defined length of time.  Use of the Scheduler as a heuristic for 

these purposes is not only convenient, but is guaranteed to find a feasible solution, if one exists.  

Drexl and Grunewald (1993) point out that, in general, heuristics may, especially in the presence of 

scarce resources, not even be able to find a feasible schedule.  The Scheduler is designed 

specifically for this problem type and its use assures that a feasible solutions is found and that 

multipliers can be calculated.  The analysis in Chapter V also showed that the optimal solution to a 

problem is generally found relatively quickly using the Scheduler (most of the computing time is 

used to verify the solution), so a relatively good heuristic solution should be found. 

To estimate the marginal benefit of nonrenewable resources, the regular availability of each 

nonrenewable resource is varied, in turn, by one unit and (P) is re-solved until the Scheduler 

terminates according to the criteria previously selected.  The difference in solutions represents the 

marginal benefit of an additional unit of nonrenewable resource.  (A similar approach was used by 

Van Hove, 1998). 

Renewable resources are more difficult because there is not a single availability for each 

resource.  In fact, each resource has a separate availability for each time period.  Therefore, to 

estimate the marginal benefit of a renewable resource, the regular availability of the resource in 

each period is concurrently varied by one unit and (P) resolved until the Scheduler terminates 

according to the criteria previously selected.  The difference in solutions represents the total benefit 

of an additional unit of nonrenewable resource in each time period.  To avoid over-estimating the 

value of the resource per period, the total benefit is divided by the program duration in the heuristic 

solution. 

The fourth approach for choosing multipliers is based on the concept of Average Utilization 

Factor (AUF) described by Kurtulus and Davis (1982) and Kurtulus and Narula (1985).  As 

defined by Kurtulus and Davis, the AUF is calculated for each time period and is the ratio of the 

total amount of resource required to the amount available, based on a time only analysis of the 

program.  The value of this measure is, in principle, equivalent to the Resource Strength (RS) used 

in previous chapters.  However, RS is not generally known, so AUF must be calculated.  RS was 

used in the generation of problems, is a factor known outside the problem, and is the same for each 

time period, by construction.  AUF, by contrast, is used within the problem where the value is not 

known a priori, but must be calculated.  AUF may also vary between time periods. 
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The AUF Approach, then, consists of applying the Generalized Critical Path Method (GCPM), 

developed in Chapter IV, to the problem.  This provides the time only schedule of the program.  

The next step is to calculate the total demand for each resource in each time period.  Recall that the 

GCPM uses the activity execution modes of least duration.  These shortest-duration modes, 

however, are not necessarily the mode choices the projects would make from a resource 

perspective.  To assure that the AUF accounts for the possibly higher resource demands of 

alternative modes, an activity’s demand for a resource is based on the highest possible demand 

from among the activity’s modes.  The AUFs for renewable and nonrenewable resources are, then, 

calculated using the following equations: 
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where 
R

qtAUF  = AUF for renewable resource q at time t 

N
qAUF  = AUF for nonrenewable resource q 

R
imqtr  = requirement for renewable resource q at time t by activity i in mode m 

N
imqr  = requirement for nonrenewable resource q by activity i in mode m 

R
qtR  = availability of renewable resource q at time t 

N
qR  = availability of nonrenewable resource q  

is  = start time of activity i 

1id  = duration of activity i in mode 1 
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If 1?AUF  for some resource in some time period, the demand for the resource is no more 

than its availability.  The price charged by the program for this resource in this time period should 

be zero. 

If 1?AUF  for some resource in some time period, the demand for the resource exceeds its 

regular availability and projects should pay a premium for using this resource.  The price depends 

on the degree to which AUF exceeds one.  If the total demand for the resource is less than its 

regular plus expediting availability in the stated time period, the demand for the resource may be 

met using expediting resources.  In this case, the price charged by the program for a unit of this 

resource is the cost of a unit of expediting resource (a value which is given in the problem 

statement).  If the total demand for the resource is greater than its regular plus expediting 

availability, then resource feasibility is only achievable through some combination of activity mode 

changes and / or activity delays (in the case of nonrenewable resources, only mode changes). 

The minimal cost combination of mode changes and activity delays could be calculated to 

provide the estimated cost of resource feasibility in the given time period.  Such a calculation 

would have to account for the ripple effect that the changes would have on subsequent activities 

and time periods.  If an activity is delayed, other activities may also need to be delayed, adding to 

the cost of the initial delay and possibly creating resource infeasibilities in future time periods.  

Even if a simple mode change is made, the duration of the changed activity may increase, causing 

the same effects on future activities and time periods caused by an activity delay. 

Given the reality that the resource demands (upon which the resource infeasible condition 

results) is only a rough estimate, the computational cost of calculating the minimal cost 

combination of mode changes and activity delays would not likely prove worthwhile.  Instead, the 

cost of the time-only schedule is calculated.  The cost of modes and of expediting resource usage is 

included in the time-only cost, but resource infeasibilities are temporarily ignored.  In essence, it is 

the resource infeasibilities in the time only schedule that force an alternate solution. 

The original problem is, then, solved heuristically as in the Modified Nauss Approach, yielding 

a resource feasible solution.  The difference in the costs of the time-only schedule and the resource-

feasible schedule is calculated.  This difference is the consequence of the resource infeasibilities in 

the time-only schedule.  Finally, the cost difference is partitioned among the resources whose 

1?AUF  and whose demand could not be met with expediting resources.  The partitioning is based 

on the relative contribution to resource infeasibility of the violating resources as follows: 
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where 

?  is the total cost difference between the time only and resource feasible schedules 
R
qtp  is the price charged for renewable resource q in time period t 

N
qp  is the price charged for nonrenewable resource q 

 

In this way, the program shares the cost of a resource feasible schedule by charging the 

projects for using resources in time periods that cause resource conflicts in the time only schedule. 

All of the proposed methods for choosing multipliers are, to this point, theoretically based.  It 

remains to be seen under what conditions each method performs well.  Testing of the approaches is 

presented in a subsequent section. 

Acceleration Schemes 

A number of optional schemes may be used to increase the speed of the decomposition 

approach.  The acceleration schemes presented here can be used together with the multipliers, but 

the schemes are more direct approaches for bounding and constraining the subproblem solutions.  

The Incremental Enumeration  scheme also provides quicker solution of the master problem.  

When Sweeney and Murphy presented their decomposition approach, they solved the master 

problem to completion without testing solutions for optimality until the end.  In fact, an optimal 

solution may be found and proven to be optimal early in the enumeration.  The Incremental 

Enumeration scheme makes a more proactive use of the optimality conditions to find and confirm 

an optimal solution before completely enumerating the master problem. 



 6-38

Subproblem Solution Bounding.  This scheme is based on finding a good solution to the 

original problem (P) before the subproblems are solved.  With a good solution to (P), upper bounds 

on the subproblem solution values can be determined and used to initialize the subproblem solution 

arrays.  The upper bounds permit faster fathoming of unproductive subproblem solutions than the 

arbitrarily large values with which the solution arrays would otherwise be initialized. 

This option is executed by first finding a heuristic solution (HS) to (P).  The Scheduler is used 

for this purpose as was previously done for finding Lagrangian multipliers.  A minimal cost for 

each subproblem is then calculated.  A minimal cost is easily obtained by using the early start 

times (based on the GCPM) of each activity in the subproblem.  Using the minimum base and 

incremental mode costs possible for each activity (i.e., the minimum from among the modes of the 

activity), the mode costs for all activities, starting at their early start times, are added.  This early-

start-time (EST) schedule may not be resource feasible, but it does provide a minimal cost, EST
pz , 

for Subproblems p, Pp ??1 . 

Finally, an upper bound, *pUB , on the objective function value for subproblem p* is obtained 

by subtracting the sum of the early-start-time schedule costs, EST
pz , for the other subproblems, 

*pp ? , from the heuristic solution, HS, to (P).  That is, 

?
?

??
*

EST
*

pp
pp zHSUB . 

As solutions are generated for Subproblem p*, any solution greater than *pUB  is fathomed since 

such a solution would yield a program cost greater than the heuristic solution to (P) previously 

found. 

Series Approach.  Since subproblems are solved in series (vice in parallel), information 

obtained from the k-best solutions to Subproblems 1 through p-1 can be used when solving 

Subproblem p.  The goal is to eliminate from the set of k-best solutions to Subproblem p as many 

solutions which would not be feasible to (P) when used in concert with any of the solutions to 

Subproblems 1 through p-1. 

Three types of information obtained from Subproblems 1 through p-1 can be used when 

solving Subproblem p: an upper bound on the objective function value, reduced activity start time 

windows, and constraints on resource use.  This information is obtained and used as follows: 
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? ? Upper Bound on Objective Function Value.  As with the Subproblem Solution Bounding  

scheme above, an initial heuristic solution to (P) can be obtained.  Once Subproblems 1 

through p-1 have been solved, the best solution values to Subproblems 1 through p-1 can 

be added to the value of the early-start-time schedules of Subproblems p+1 through P.  

This sum can be subtracted from the heuristic solution value, HS, to obtain a new upper 

bound on the solution to p.  When solving Subproblem p*, the upper bound on the 

objective function value is given by 

 

??
??

???
*

EST

*
1*

pp
p

pp
pp zzHSUB . 

 

? ? Reduced Activity Start Time Windows.  The k-best solutions to each of Subproblems 1 

through p-1 can be compared to find the earliest time (within the set of k-best solutions) 

that each activity in the subproblem starts.  The latest start time of each activity can be 

found in like manner.  Before solving Subproblem p, the early and late start times for 

activities in previously solved projects are fixed and the GCPM used to calculate new early 

and late start times for Subproblem p.  Doing so reduces the number of solutions in the set 

of k-best solutions to Subproblem p which are precedence infeasible when used in 

combination with the solutions to Subproblems 1 through p-1.   

? ? Constraints on Resource Use.  The limitations on program-level resources can be directly 

considered when solving each of the subproblems to reduce the number of subproblem 

solutions which are resource infeasible at the program-level.  To do so, the set of program-

level resources can be added to the set of project-level resources in each subproblem.  The 

full complement of regular and expediting resources is initially made available to each 

subproblem, and there is no charge to the subproblem for using expediting resources.  

Program-level resources, therefore, do not impact the cost of a subproblem solution, but 

serve only to eliminate subproblem solutions which cannot possibly lead to feasible 

solutions to (P).  Once Subproblems 1 through p-1 have been solved, the minimal usage of 

program-level resources from among the k-best solutions to each subproblem is used to 

decrement the availability of these resources to Subproblem p.  As a result, each 

subproblem is increasingly more constrained by the program-level resources and its set of 
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k-best solutions provides a higher percentage of solutions which are resource feasible when 

used in combination with the solutions to the previous subproblems. 

Incremental Enumeration.  Each time a feasible master problem solution is found, recalculate 

?  and the subproblem deltas, p? , and test for optimality.  In this case, however, the p?  for each 

subproblem is calculated using the current subproblem solution rather than the k-th best solution to 

that subproblem.  The advantage of this approach is that if the feasible master problem solution is 

an optimal solution to (P), this test might prove the solution to be optimal without having to 

implicitly enumerate all Pkkkk ???? 321  possible subproblem solution combinations.  Note 

that failing the optimality test at this point does not imply that the current feasible solution is not 

optimal, only that enumeration of solution combinations must continue until optimality can be 

established.  Note, too, that this option is useful only if the primary consideration is to find an 

optimal solution rather than finding the k-best solutions to (MP).  While this option leads to an 

optimal, it may terminate before the k-best solutions to (MP) have been found. 

Test Problem Design 

The experimental design for testing the approaches presented in this chapter can be divided 

into two parts: the problem design and the solution design.  The solution design, or the manner in 

which solution approaches are applied to the problems, is discussed in subsequent sections in 

conjunction with the results of those approaches.  This section discusses the problems generated to 

test the solution approaches. 

Each problem used for testing can be defined in terms of its program structure, the difficulty of 

its component projects, and the difficulty imposed by the program-level constraints.  These 

problem characteristics are described below, followed by a discussion of how the characteristics 

are combined to form a set of 54 test problems used throughout the remainder of the chapter. 

Program Designs.  Five basic program structures are used for testing.  These program 

structures differ in the way projects relate to each other temporally and in the presence or absence 

of program-level renewable and nonrenewable resources.  The five program structures are depicted 

in Figure 6-10 as Program A through Program E.  In each depiction, temporal relationships are 

represented by the network structure presented, where the blocks represent distinct projects and the 

circles represent dummy start and terminal activities.  Lines between projects (as in Program D) 
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represent generalized precedence between activities in one project and activities in another project.  

The vertical bar labeled NR denotes the presence of program-level nonrenewable resources while 

the horizontal bar labeled RR denotes the presence of program-level renewable resources. 

Program A consists of a set of nearly independent projects.  There are no program-level 

resources and the projects are tied together merely by a dummy start activity and an end activity.  

The projects, however, cannot be solved in isolation because the end activity represents the 

completion of the program, which is dependent on the completion times of the projects.  Decisions 

made at the project level, consequently, impact the completion cost (and overall cost) incurred by 

the program. 

Program B consists of a set of projects which are related only by their requirements for 

common, program-level, nonrenewable resources.  In the absence of (1) expediting resources at the 

project and program levels and (2) maximum time lags between activities, this program becomes 

the multi-project GMRCMPSP addressed by Van Hove (1998). 

Program C builds upon Program B with the addition of program-level renewable resources. 

Program D is an extension of Program C, where generalized precedences between activities in 

different projects are added. 

Finally, Program E is, in some sense, a special case of Program D.  Program E has generalized 

precedences between activities in different projects, but the precedences exist only between the 

terminal activity of one project and the start activity of the next.  Consequently, projects follow one 

from another.  Program E may also contain renewable resources controlled by the program, but 

since projects do not overlap in time, these program-level resources can be treated as though 

passed down to the projects.  The same cannot be said of program-level nonrenewable resources 

where their allocation to projects constrains the execution options of the projects’ activities. 
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Figure 6-10. Program Designs 

Project Level Difficulty.  The projects which comprise each program differ in their degree of 

difficulty to schedule.  Based on the results of Chapter V, six problem parameters were identified 



 6-43

as being significant factors in problem solvability.  With the exception of number of activities, two 

levels of each factor were chosen and partitioned to form an Easy set of parameters and a Hard set 

of parameters.  (Number of activities is dealt with separately and discussed later.)  Table 6-2 

outlines the significant factors and the levels chosen to form the Easy and Hard sets of parameters.  

Note that fewer activity execution modes and fewer resources make easier projects, while higher 

network restrictiveness and higher regular resource strength contribute to easier projects.  The 

parameters held constant for problem generation are outlined in Table 6-3. 

 

Table 6-2. Project-Level Generation Parameters Which Vary 

PARAMETER
Designator "Easy" "Hard"
Number of Modes Per Activity 1 3
Project Network Restrictiveness 0.75 0.25
Number of Renewable/Nonrenewable Resources 1 3
Regular Renewable/Nonrenewable Resource Strength 1.00 0.50
Total Renewable/Nonrenewable Resource Strength 0.00 0.50

LEVELS

 
 

Table 6-3. Project Level Generation Parameters Held Constant 

PARAMETER Min Max
Job Duration, Maximum 10 10
Lag Fraction 0.20 0.20
Minimal Lag -2 2
Maximal Lag 4 8
Renewable/Nonrenewable Resource Factor 1.00 1.00
Resource Demand 1 10
Base Project Penalty 500 750
Project Penalty Increment 400 500
Base Mode Cost 50 100
Mode Cost Increment 50 100
Expediting  Resource Cost 0 50  

Program Level Difficulty.  Programs also differ in the difficulty of the program-level 

constraints.  Depending on the program structure being addressed and its corresponding features, 

program-level generalized precedences and resources are generated to be either Easy or Hard.  

Table 6-4 shows the program-level parameters which vary and the values which define the Easy 

and Hard sets.  Note that the factor levels used to form the Easy and Hard sets were chosen based 

on results of Chapter V.  While fewer resources and higher regular resource strength should clearly 

make for easier program-level constraints, it is unclear in advance of testing whether higher 
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program network restrictiveness really makes the problem easier or if it makes the problem harder.  

If the problem were solved as a single super-project, higher network restrictiveness would certainly 

make the problem easier.  On the other hand, the higher restrictiveness may make it more difficult 

in the decomposition approach to find feasible sets of subproblem solutions.  Since the exact 

impact of program restrictiveness is not known a priori, the values have been chosen consistent 

with the results of Chapter V. 

 

Table 6-4. Program-Level Generation Parameters Which Vary 

PARAMETER
Designator "Easy" "Hard"
Program Network Restrictiveness 0.75 0.25
Number of Renewable/Nonrenewable Resources 1 3
Regular Renewable/Nonrenewable Resource Strength 1.00 0.50
Total Renewable/Nonrenewable Resource Strength 0.00 0.50

LEVELS

 
 

Table 6-5. Problem Design 

Program 
Structure 

Projects Jobs Per 
Project 

Total Jobs Project / Program 
Difficulty  

Total 
Problems 

 
A 

 
4 

4 
8 
12 

18 
34 
50 

Easy / NA 
Hard / NA 

 
6 

 
B 

 
4 

4 
8 
12 

18 
34 
50 

Easy / Easy 
Easy / Hard 
Hard / Easy 
Hard / Hard 

 
12 

 
C 

 
4 

4 
8 
12 

18 
34 
50 

Easy / Easy 
Easy / Hard 
Hard / Easy 
Hard / Hard 

 
12 

 
D 

 
4 

4 
8 
12 

18 
34 
50 

Easy / Easy 
Easy / Hard 
Hard / Easy 
Hard / Hard 

 
12 

 
E 

 
4 

4 
8 
12 

18 
34 
50 

Easy / Easy 
Easy / Hard 
Hard / Easy 
Hard / Hard 

 
12 

Total     54 
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Problem Generation.  With program structures designed and the characteristics of Easy and 

Hard projects and programs defined, a total of 54 programs were generated using PAGER 

(described in Chapter IV).  Each program consists of four projects, all projects being either Easy 

or Hard.  Table 6-5 shows the design applied to problem generation. 

Testing Results 

Testing was conducted to: 

1. Evaluate the alternate methods of determining multipliers 

2. Assess the performance of the acceleration schemes 

3. Evaluate alternate choices of k 

4. Compare the decomposition approach to the single-project Scheduler from Chapter V. 

All test problems were generated using the Program Attributes Generator with Expediting 

Resources (PAGER) presented in Chapter IV and solved using a 750 MHz, Pentium III processor 

with 256 MB of Random Access Memory (RAM).  

Methods of Determining Multipliers.  The 54 test problems outlined in the previous section 

were solved using each of the methods for determining multipliers.  Each problem was solved to 

find a single optimal solution.  At each iteration of the decomposition algorithm, 100 solutions 

from each subproblem were generated.  The problems were also solved using the single-project 

Scheduler to find a single optimal solution.  A solution time limit of 20 minutes per problem was 

imposed to control the total time to solve all test problems. 

Figure 6-11 shows the percentage of problems which were solved to optimality within the time 

limit and the percentage which exceeded the time limit.  The AUF method of determining 

multipliers was most successful at solving the set of problems within the time limit, followed by 

using no multiplier at all, then the MNA method, and the single-project Scheduler.  Using an 

arbitrarily large number for the multipliers was least productive. 

For the problems which solved to optimality within the imposed time limit, solutions times are 

reported in Table 6-6.  Problem decomposition led to more problems solved and generally faster 

solution times than the single-project Scheduler, except when arbitrarily large multipliers were 

used.  When comparing just the multiplier methods, though, the results in Table 6-6 are mixed, 

with no method clearly dominating the others.  Using no multipliers at all had the best average 

solution time, but it found fewer solutions (the number reported in the Count column of Table 6-6) 
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than the AUF method.  The MNA method appears to be dominated by the AUF method and by 

using no mulitpliers, but further investigation is merited to determine if problem characteristics 

effect the performance of each method. 
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Figure 6-11. Solution Results vs. Multiplier Type / Scheduler 

 

Table 6-6. Solution Time vs. Multiplier Type / Scheduler 

Approach Count Minimum Average Maximum Std Dev
Scheduler 31 0.00 66.75 1030.23 216.95
SMD (0) 38 0.02 38.81 724.00 144.12
SMD (99999) 12 0.02 61.89 724.04 199.68
SMD (MNA) 36 0.02 56.75 724.03 156.85
SMD (AUF) 40 0.02 67.02 960.06 207.34

Solution Time (seconds)

 
 

Solution results are also shown in Figure 6-12 versus the program designs.  Program designs 

correspond to and are numbered consistent with Figure 6-10.  The program design with no 

program-level constraints, Design A, was solved to optimality 100% of the time within the 

20-minute time limit, while the design with renewable resources, nonrenewable resources, and 

precedence constraints at the program-level, Design D, was solved to optimality only 41.7% of the 

time within the 20-minute time limit. 
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Solution Results vs. Program Design
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Figure 6-12.   Solution Results vs. Program Design 

 

Table 6-7 reports solution time as a function of problem characteristics.  The table shows each 

program design, the difficulty imposed by the program and project constraints (as discussed in the 

previous section), and each multiplier approach.  The corresponding count of and solution times of 

problems solved to optimality within the time limit are shown.  Again, no method clearly dominates 

the others as one method solves more problems in some cases than other methods and solves fewer 

problems in other cases. 

Since no method of finding multipliers is better in all cases than the others, the AUF method is 

used to determine multipliers for the remainder of testing since it succeeded at producing the most 

optimal solutions within the imposed time limit.  

Acceleration Schemes.  The set of 54 problems were solved with and without the acceleration 

schemes, this time generating 1000 solutions from each subproblem at each iteration.  Table 6-8 

shows the number of problems that were solved to optimality within the imposed 20-minute time 

limit, as well as solution times.  Using the acceleration schemes not only resulted in finding more 

solutions, but the average solution time and standard deviation were smaller.  Acceleration schemes 

were, therefore, used in testing and are, in fact, represented in the results presented above for 

multiplier methods. 
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Table 6-7. Solution Time vs. Problem Difficulty 

Program 
Design

Program 
Difficulty

Project 
Difficulty

Multiplier 
Approach Count Minimum Average Maximum Std Dev

A NA Easy 0 3 0.03 0.04 0.06 0.01
99999 3 0.02 0.04 0.06 0.02
MNA 3 0.03 0.04 0.06 0.01
AUF 3 0.02 0.04 0.07 0.02

Hard 0 3 0.05 245.97 724.00 338.07
99999 3 0.05 246.01 724.04 338.07
MNA 3 0.04 245.99 724.03 338.07
AUF 3 0.04 246.00 724.03 338.07

B Easy Easy 0 3 0.03 0.04 0.06 0.01
99999 1 4.32 4.32 4.32 0.00
MNA 3 0.04 0.05 0.07 0.01
AUF 3 0.04 0.05 0.07 0.01

Hard 0 2 1.14 7.37 13.60 6.23
99999 0 na na na na
MNA 1 1.14 1.14 1.14 0.00
AUF 2 1.14 7.40 13.66 6.26

Hard Easy 0 3 0.03 0.04 0.05 0.01
99999 0 na na na na
MNA 3 0.03 0.04 0.05 0.01
AUF 3 0.03 0.04 0.05 0.01

Hard 0 2 0.09 76.74 153.38 76.65
99999 0 na na na na
MNA 3 2.38 110.84 221.75 89.57
AUF 1 2.49 2.49 2.49 0.00

C Easy Easy 0 3 0.03 0.04 0.05 0.01
99999 1 0.04 0.04 0.04 0.00
MNA 3 0.02 0.04 0.06 0.02
AUF 3 0.02 0.04 0.06 0.02

Hard 0 3 0.28 185.44 546.21 255.13
99999 0 na na na na
MNA 2 0.30 299.47 598.64 299.17
AUF 3 0.29 203.08 598.62 279.72

Hard Easy 0 1 0.09 0.09 0.09 0.00
99999 1 0.05 0.05 0.05 0.00
MNA 1 0.05 0.05 0.05 0.00
AUF 3 0.04 327.34 960.06 447.49

Hard 0 1 2.10 2.10 2.10 0.00
99999 0 na na na na
MNA 0 na na na na
AUF 1 6.94 6.94 6.94 0.00

D Easy Easy 0 2 0.03 0.04 0.04 0.00
99999 1 0.03 0.03 0.03 0.00
MNA 2 0.03 0.03 0.03 0.00
AUF 2 0.03 0.03 0.03 0.00

Hard 0 2 2.41 2.59 2.76 0.17
99999 0 na na na na
MNA 1 2.27 2.27 2.27 0.00
AUF 2 2.26 2.57 2.87 0.31

Hard Easy 0 1 0.03 0.03 0.03 0.00
99999 1 0.03 0.03 0.03 0.00
MNA 1 0.03 0.03 0.03 0.00
AUF 2 0.03 153.15 306.27 153.12

Hard 0 1 0.41 0.41 0.41 0.00
99999 0 na na na na
MNA 1 48.16 48.16 48.16 0.00
AUF 1 5.30 5.30 5.30 0.00

E Easy Easy 0 3 0.02 0.04 0.05 0.01
99999 1 0.05 0.05 0.05 0.00
MNA 3 0.02 0.03 0.05 0.01
AUF 3 0.02 0.03 0.04 0.01

Hard 0 1 0.53 0.53 0.53 0.00
99999 0 na na na na
MNA 1 97.20 97.20 97.20 0.00
AUF 1 0.49 0.49 0.49 0.00

Hard Easy 0 3 0.02 0.03 0.05 0.01
99999 0 na na na na
MNA 3 0.03 0.03 0.04 0.00
AUF 3 0.03 0.04 0.05 0.01

Hard 0 1 3.13 3.13 3.13 0.00
99999 0 na na na na
MNA 2 9.38 112.05 214.72 102.67
AUF 1 9.26 9.26 9.26 0.00

Solution Time (seconds)
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Table 6-8. Value of Acceleration Schemes 

Acceleraton 
Schemes? Count Minimum Average Maximum Std Dev

No 28 0.01 92.33 846.48 227.91
Yes 34 0.02 50.59 903.07 193.39

Solution Time (seconds)

 
 

Choice of k.  The test set of 54 problems was again solved, now for varying levels of k.  The 

number of solutions, k, generated by each subproblem was varied from 100 to 1000 to 10,000.  

Figure 6-13 shows the percentage of problems solved to optimality within the 20-minute time limit 

for each level of k, while Table 6-9 lists solution time statistics for these problems.  While more 

problems were solved with k = 100, a value of k = 100 did require, in some cases, more iterations.  

Figure 6-14 shows the number of iterations required to find the optimal solutions for each level of 

k. 

 

Solution Results vs. k

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Optimal Exceed 20 Min

Result

P
er

ce
nt

ag
e 

of
 P

ro
bl

em
s

k = 100 k = 1000 k = 10000

 

Figure 6-13. Solution Results vs. k 

 

Note that in 9 cases, k = 100 required more than one iteration.  Only one case of k = 1000 

required more than one iteration (it required seven iterations) and k = 10,000 never required more 
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than one iteration.  Since there is a tradeoff between the reduced time to solve the subproblems for 

fewer solutions and the risk of having to iterate more than once, solution times for the varying 

levels of k need to be compared. 

 

Table 6-9. Solution Times vs. k 

Approach Count Minimum Average Maximum Std Dev
k  = 100 40 0.02 75.19 783.87 212.44
k  = 1000 34 0.02 50.59 903.07 193.39
k  = 10000 32 0.03 64.69 960.13 219.18

Solution Time (seconds)

 
 

Table 6-10 shows solutions times vs. k, arranged by program design.  The easiest program 

design is Design A, having no program-level constraints.  Since any optimal to each of the 

subproblems is feasible, and thus optimal, to the master problem, generating a single optimal for 

each subproblem would be sufficient for finding an optimal solution to the original problem.  As 

expected, the smaller k is, the faster the algorithm solves a problem for Design A. 
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Figure 6-14.   Iterations Required vs. k 
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For the other program designs, the results in Table 6-10 are not so clear since one value of k 

may solve fewer problems than another value of k, but the average solution time for the problems 

that were solved is lower.  To better understand the distribution of solution times, refer to Figure 

6-15. 

 

Table 6-10. Solution Time vs. k 

Program 
Design k Count Minimum Average Maximum Std Dev

A 100 6 0.02 123.01 724.01 268.83
1000 6 0.03 133.16 734.06 269.74
10000 6 0.04 305.84 960.13 427.71

B 100 10 0.02 16.79 153.39 45.71
1000 8 0.02 0.23 0.96 0.30
10000 8 0.05 2.45 6.40 2.37

C 100 8 0.03 69.58 546.23 180.19
1000 6 0.03 0.23 0.58 0.21
10000 5 0.04 3.79 9.80 4.36

D 100 6 0.03 0.87 2.75 1.16
1000 5 0.02 1.74 7.66 2.98
10000 5 0.05 18.40 82.51 32.24

E 100 10 0.02 153.99 783.87 307.85
1000 9 0.02 101.02 903.07 283.57
10000 8 0.03 13.05 51.06 21.80

Solution Time (seconds)

 
 

Figure 6-15 shows the distribution of solution times for each value of k.  The vertical segments 

of the graph show the solution times for the corresponding value of k.  The times are plotted on a 

logarithmic scale to better show the distribution of times at the bottom of the graph. 

While most solution times are clustered at the bottom of the plot (relatively short solution 

times), there are a few for each value of k with relatively long solution times.  Perhaps most 

noteworthy is the behavior of points in the middle of the plot.  As k increases, there is a general 

shift of times upward, as well as a spreading out of solution times. 

Given the greater number of problems solved and generally faster solution times with k = 100, 

generating 100 solutions for each subproblem at each iteration of the algorithm appears to be the 

most effective, even if, on occasion, more iterations must be made. 

Comparison to Single-Project Scheduler.  As previously seen in Table 6-6, the decomposition 

approach outperformed the single-project Scheduler in terms of number of problems solved within 

a 20-minute time limit and in terms of solution time. 
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Log Distribution of Solution Times vs. k
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Figure 6-15.   Log Distribution of Solution Times vs. k 

Non-Convergence.  While the focus of the analysis in this section has been on the problems 

that solved within a 20-minute time limit, the question remains how long it takes to solve the other 
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problems.  A number of the these other problems were solved with a two-hour time limit.  One 

problem of Design B, with both difficult program- and project-level constraints, solved to 

optimality in just over 42 minutes, while a problem of Design C, also with difficult constraints, 

required just over 1.5 hours to solve to optimality.   

On the other hand, a problem of type D and a problem of type E still failed to solve in the time 

allotted.  In both cases, the objective function value found in 2 hours was no better than that found 

in 20 minutes.  Because of the misuse of the Sweeney-Murphy Optimality Condition as being 

necessary and not just sufficient, it is possible that the failure to establish an optimal solution 

results from an inability to classify the best found solution as optimal rather than not being able to 

find an optimal solution.  For this reason, finding a necessary condition to establish optimality is a 

worthwhile area for future research. 

Summary and Conclusions 

The decomposition approach presented in this chapter proved effective for solving the 

MRCMPSP-GPR/EXP, even for problems with as many as 50 activities.  The decomposition 

approach solved more problems than the single-project Scheduler and in less time.  The AUF 

method of determining Lagrangian multipliers appeared most useful, as did generating 100 

solutions to each subproblem at each iteration.  The lack of a necessary condition to establish 

optimality makes it difficult to determine if any given problem will converge to an optimal solution.  

However, even in the cases where the best-found solution cannot be established as optimal, the set 

of k solutions produced by the algorithm may still be considered good heuristic solutions. 
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VII.  Contributions and Recommendations 

 

This chapter presents an overview of the research in this dissertation, outlining the most 

significant contributions of the research (summarized in Table 7-1) and suggesting areas for 

further research. 

Contributions 

This dissertation introduced the Multi-Modal, Resource-Constrained, Multi-Project Scheduling 

Problem with Generalized Precedence and Expediting Resources (MRCMPSP-GPR/EXP) to the 

project scheduling literature.  The MRCMPSP-GPR/EXP builds upon the classic Resource-

Constrained Project Scheduling Problem (RCPSP), extending the RCPSP for multiple activity 

execution modes, generalized precedence with minimal and maximal time lags, and expediting 

resources, all within a multi-project framework.  The multi-project framework for the MRCMPSP-

GPR/EXP allows for generalized precedence relationships and resource constraints (both 

renewable and nonrenewable) at the program level, not just at the project level.  A mathematical 

formulation of the MRCMPSP-GPR/EXP was constructed and extended from the 0-1 formulation 

of the RCPSP by Pritsker et al. (1969).   

A problem generator for the MRCMPSP-GPR/EXP was developed as part of this research.  

The Program Attributes Generator with Expediting Resources (PAGER) gives the user extensive 

flexibility to define the parameters of the problem to be generated.  This allows the user to craft 

any of the problems diagrammed in Figure 7-1 (repeated from Figure 2-1), all of which are special 

cases of the MRCMPSP-GPR/EXP.  

The most important feature of PAGER is the method it uses to construct the underlying project 

network structure.  PAGER uses the Restrictiveness measure proposed by Thesen (Thesen, 1977), 

which defines the degree to which a network is constrained by its component arcs.  This measure is 

recognized as being far superior to other measures of network complexity, and PAGER is the first 

generator to directly exploit this particular measure.  Use of the Thesen Restrictiveness measure 

gives the user of PAGER unparalleled control over the complexity of the project network.  Such 

control is imperative in designing an experiment to evaluate any algorithm for solving a project 

scheduling problem since the effectiveness of an algorithm is directly impacted by the complexity 

of the project network (Kolisch et al., 1992). 
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Figure 7-1. Problem Hierarchy 

The principal focus of this research was the development of two methodologies for solving the 

MRCMPSP-GPR/EXP, one treating any problem instance as a single project, the other exploiting 

the decomposability of multi-project instances of the MRCMPSP-GPR/EXP. 
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The first methodology for solving the MRCMPSP-GPR/EXP is a specialized, implicit 

enumeration algorithm based on the scheme by Talbot (1982) for the Multi-Modal RCPSP 

(MRCPSP).  Talbot’s algorithm was extended for generalized precedence with minimal and 

maximal time lags and for expediting resources.  Since the objective of the MRCMPSP-GPR/EXP 

is to minimize project costs, including those for expediting resources, the objective function of the 

MRCMPSP-GPR/EXP is a non-regular measure of performance.  The non-regularity of the 

objective function makes the majority of the bounding rules in the literature inapplicable for the 

MRCMPSP-GPR/EXP.  Consequently, special bounding rules were developed and incorporated 

into the implicit enumeration algorithm.  Testing of the algorithm with and without the new 

bounding rules showed a significant acceleration in the speed of the algorithm with the bounding 

rules.  The algorithm was also demonstrated to be a significant improvement over a general 0-1 

programming approach with Special Ordered Sets (SOS) of variables as implemented in IBM’s 

Optimization Solutions Library (OSL).  No other approach in the literature is capable of solving 

the MRCMPSP-GPR/EXP, making the specialized algorithm developed in this dissertation the first 

of its kind. 

An additional feature built into the specialized single-project algorithm is the ability to 

generate a set of k-best solutions, not just a single optimal.  The set of k-best solutions may be 

useful to a decision-maker who might prefer one mathematically optimal solution over another, or 

even a mathematically inferior (but close to optimal) solution, for non-mathematical reasons.  The 

set of k-best solutions is also required by the decomposition approach, which is the second 

methodology developed for solving the MRCMPSP-GPR/EXP. 

The decomposition approach for solving the MRCMPSP-GPR/EXP is based on the work by 

Sweeney and Murphy (1979).  The approach uses Lagrangian relaxation to decompose the original 

problem into a number of subproblems (representing the multiple projects) and a master problem 

(containing the program-level constraints).  A number of multipliers for relaxing the original 

problem were developed and tested, the most efficient of which is based on the Average Utilization 

Factor (AUF) described by Kurtulus and Davis (1982) and Kurtulus and Narula (1985). 

Since Sweeney and Murphy (1979) do not specify how to solve the subproblems or the master 

problem, subproblems were solved to generate a set of k-best solutions using the single-project 

algorithm previously described.  An implicit enumeration algorithm for solving the master problem 

was also developed as part of this research.  The decomposition approach was 
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Table 7-1. Summary of Key Contributions 

Contribution Extension New Feature Theoretical 

Mathematical Formulation of MRCMPSP-GPR/EXP X   

Problem Generator for MRCMPSP-GPR/EXP X X X 

Directly Exploited Thesen Restrictiveness as 
Measure of Network Complexity 

  X 

Made Tailorable to Vast Array of Problem Types  X  

Specialized Algorithm for Single-Project Instances of 
the MRCMPSP-GPR/EXP 

X X X 

Addressed Generalized Precedence and 
Expediting Resources 

  X 

Developed New Set of Bounding Rules   X 

Incorporated Approach for Generating Set of k-
Best Solutions 

 X  

Decomposition Algorithm for Multi-Project Instances 
of the MRCMPSP-GPR/EXP 

X  X 

Built Upon Specialized Algorithm for Single-
Project Instances  

X   

Addressed Generalized Precedence, Renewable & 
Nonrenewable Resources, and Expediting 
Resources at the Program Level 

  X 

Developed New Approaches for Obtaining 
Lagrangian Multipliers  

  X 

Developed Scheme for Choosing Number of 
Solutions to Generate from Each Subproblem 

  X 

Developed Special Acceleration Schemes   X 

Incorporated Approach for Generating Set of k-
Good Solutions 

X   

Discovered Error in Sweeney-Murphy (1979) 
Decomposition Algorithm 

  X 
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further enhanced by three acceleration schemes.  Testing showed that more problems could be 

solved within a fixed time limit with the decomposition approach than by solving the problems as a 

single project.  Testing also showed that the acceleration schemes further increase the number of 

problems which can be solved within a fixed time limit.  Finally, multiple choices of k, the number 

of best solutions generated for each subproblem, were tested to determine their impact on solution 

time.  It was shown that, in general, a choice of 100-best solutions from each subproblem led to the 

most problems solved within a fixed solution time. 

Table 7-1 provides a summary of key research contributions.  For each contribution, Table 7-1 

identifies whether the contribution is an extension of research presented in the literature or a new 

feature which has not been addressed in the literature, and whether or not the contribution is of a 

theoretical (versus applied) nature. 

Recommendations 

The research presented in this dissertation unfolded a number of areas for further research.  

They include: 

1. Van Hove (1998) introduced the concept of generalized precedence with time lags 

dependent on the mode chosen for the related activities.  Although Van Hove did this for 

minimal lags only, PAGER could easily be expanded to include generalized precedence 

with minimal and maximal lags based on mode selection.  To expand PAGER in this way 

would require a straightforward re-definition of the array which describes the generalized 

precedences to add two additional indices, specifying the mode selected for each of the 

related activities.  While such an expansion would not be a theoretical advancement, it 

would allow the flexibility necessary to generate problems of the type proposed by Van 

Hove. 

2. Both solution algorithms developed in this dissertation (the single-project Scheduler and 

the multi-project decomposition algorithm) have been used to find optimal solutions (or 

sets of k-best solutions).  Both algorithms, however, could be terminated before completion 

to provide a heuristic solution (or set of solutions) to a problem.  As discussed in Chapter 

V, the single-project Scheduler often finds an optimal solution to a problem very quickly, 

even if it requires an extensive amount of time to verify the optimality of the solution.  If, 

each time one of the algorithms found a solution, the solution were compared to a 
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theoretical lower bound (e.g., the linear program relaxation), it might be possible to use the 

algorithms on much larger problems to find a solution within a desired tolerance of the 

theoretical lower bound (e.g., 5-10%).  One advantage of both algorithms in this 

dissertation is that, by their nature, they will always provide feasible solutions only.  This 

is not the case with all heuristics (Drexl and Grunewald, 1993).  Therefore, both 

algorithms, used as heuristics, might favorably compare to other heuristics in the literature. 

3. The decomposition approach developed in this dissertation should easily lend itself well to 

parallelization.  Since each subproblem is independent of the others, they could be solved 

in parallel, thereby reducing (perhaps significantly) the overall time required to solve a 

problem.  There is, of course, some computational overhead associated with solving 

problems in parallel, but the time saved in solving the subproblems would most likely 

compensate for this overhead.  This should be especially true the more subproblems (or 

projects) there are in the problem. 

4. The Optimality Theorem presented by Sweeney and Murphy (1979: 1131) provides a 

sufficient condition to establish the optimality of the best solution to the decomposition 

master problem.  Chapter VI showed, however, that the Sweeney-Murphy Optimality 

Theorem provides no necessary conditions.  Consequently, the decomposition algorithm 

presented by Sweeney and Murphy may fail to terminate successfully, even if an optimal 

solution to the original problem has been found.  Development of a necessary condition 

would significantly advance the functionality of the Sweeney-Murphy Decomposition 

approach.  

Summary 

Compared to many disciplines, the field of project scheduling is still in its infancy.  This 

dissertation has advanced this growing field, introducing the MRCMPSP-GPR/EXP to the 

literature and contributing two methodologies for solving the MRCMPSP-GPR/EXP.  This 

dissertation has also contributed to the more general fields of networks (in particular, the 

generation of networks) and integer programming (especially the decomposition of large problems).  

Like all research, this dissertation has also fostered new questions and areas for research.  The 

hope of this researcher is that the body of knowledge will continue to grow and that larger and 

more important problems can be addressed. 
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APPENDIX A.  Notation 

 

Overview 

This appendix provides a Rosetta Stone of notation used throughout this dissertation.  The 

following sections list, respectively: (1) the notation used to describe the different types of project 

scheduling problems, (2) an alphabetical listings of abbreviations and acronyms, and (3) 

mathematical notation.  Except as otherwise noted, the notation presented here is used consistently 

throughout this dissertation. 

Problem Types 

 GMRCMPSP: Generalized, Multi-Modal, Resource-Constrained, Multi-Project 
Scheduling Problem 

 GMRCPSP: Generalized, Multi-Modal, Resource-Constrained Project 
Scheduling Problem 

 MPSP: Multi-Project Scheduling Problem 

 MRCMPSP-GPR: Multi-Modal, Resource-Constrained, Multi-Project Scheduling 
Problem with Generalized Precedence 

 MRCMPSP-GPR/EXP: Multi-Modal, Resource-Constrained, Multi-Project Scheduling 
Problem with Generalized Precedence and Expediting Resources 

 MRCPSP: Multi-Modal, Resource-Constrained Project Scheduling Problem 

 MRCPSP-GPR: Multi-Modal, Resource-Constrained Project Scheduling Problem 
with Generalized Precedence 

 MRCPSP-GPR/EXP: Multi-Modal, Resource-Constrained Project Scheduling Problem 
with Generalized Precedence and Expediting Resources 

 NPVP: Net Present Value Problem 

 PSP: Project Scheduling Problem 

 RCMPSP: Resource-Constrained, Multi-Project Scheduling Problem 

 RCPSP: Resource-Constrained Project Scheduling Problem 

Abbreviations and Acronyms 

 ATO: Air Tasking Order 

 AUF: Average Utilization Factor 

 CI: Complexity Index 

 CNC: Coefficient of Network Complexity 
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 CPM: Critical Path Method 

 (D): Lagrangian Dual of Problem (P) 

 ERS: Expediting Resource Strength 

 IP: Integer program 

 GCPM: Generalized Critical Path Method 

 LP: Linear program 

 (MP): Sweeney-Murphy Master Problem 

 (MP2): Revised Sweeney-Murphy Master Problem 

 (P): LP formulation of project scheduling problem 

 PAGER: Program Attributes Generator with Expediting Resources 

 RS: Resource Strength 

 RT: Network Restrictiveness (of Thesen) 

 SOS: Special Ordered Set 

 ? ??pSP : Sweeney-Murphy Subproblem p 

Mathematical Notation 

The notation provided in this section is listed alphabetically.  However, any given letter may be 

represented by its Roman or Greek equivalents, its lower or upper cases, or by different formats 

(i.e., italics and bold).  The representation of a letter denotes the type of mathematical entity it 

symbolizes.  Using the letter “x” (and its Greek equivalent “? ”) as an example, the following list 

correlates the letter representation to the mathematical entity and lays out the ordering of notation 

based on its representation. 

 

 x: Scalar (e.g., index, constant) 

 X: Scalar 

 X: Scalar (e.g., upper bound on index, constant) 

 X: Set 

 x: Vector 

 X: Matrix 

 ? : Vector 

 ? : Function 
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Notation.   

 0: (Zero) Index associated with program-level sets (i.e., the program is Project 0)   

 aij: Binary variable: 1, if activity i directly precedes activity j; 0, otherwise 

 at: Cost for completing the program at time t 

 A: Set of network arcs (Chapter IV only) 

 A: Set of all schedules 

 AE: Set of activities which are eligible for labeling and have no generalized precedence 
relationship (used in the GCPM) 

 AL: Set of activities which are eligible for labeling and have a generalized precedence 
relationship (used in the GCPM) 

 AS: Set of activities which have been labeled (used in the GCPM) 

 A1: Set of activities where each activity is a generalized predecessor every other 
activity in the set (used in the GCPM) 

 A: Adjacency matrix 

 
pNA : Matrix of program-level generalized precedence constraint coefficients associated 

with project p 

 
pHA : Matrix of program-level expediting resource constraint coefficients associated 

with project p 

 pA : Matrix of program-level constraint coefficients associated with project p 

 pb : Vector of right-hand side coefficients of constraint set p 

 
pNB : Matrix of project-level generalized precedence constraint coefficients associated 

with project p 

 
pHB : Matrix of project-level expediting resource constraint coefficients associated with 

project p 

 pB : Matrix of constraint coefficients pertaining to project p 

 N
k p

c : Cost of nonrenewable expediting resources required by pk  

 N
qc : Cost of an expediting unit of nonrenewable resource q 

 R
k p

c : Cost of renewable expediting resources required by pk  

 R
qtc : Cost of an expediting unit of renewable resource q at time t 

 pC : Accumulated cost of the current solutions of Subproblems 1 through p  

 CNCp: Coefficient of network complexity for project p 
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 pc : Vector of costs associated with project p 

 
iimd : Duration of activity i in mode m 

 min
pd : Minimum duration of activities in project p 

 max
pd : Maximum duration of activities in project p 

 dpim: Duration of activity p(i) in mode m 

 D: Program planning horizon 

 Dp: Planning horizon of project p 

 p? : Due date factor of project p (Chapter IV only) 

 p? : Difference between the worst and best solutions to Subproblem p 

 min
p? : Minimum due date factor of project p (Chapter IV only) 

 max
p? : Maximum due date factor of project p (Chapter IV only) 

 ? : Difference between upper bound and lower bound of (MP) 

 min
ij? : Minimal start-start lag time between activities i and j 

 max
ij? : Maximal start-start lag time between activities i and j 

 epi: Early start time of activity p(i) 

 Ep: Early start time of project p 

 min
pENC : Minimum expediting nonrenewable resource base cost for project p 

 max
pENC : Maximum expediting nonrenewable resource base cost for project p 

 min
pERC : Minimum expediting renewable resource base cost for project p 

 max
pERC : Maximum expediting renewable resource base cost for project p 

 min
?pERS : Minimum expediting resource strength for resource type ?  for project p 

 max
?pERS : Maximum expediting resource strength for resource type ?  for project p 

 RF? : Resource factor tolerance 

 F: Early program completion time 

 Fp: Early completion time of project p 

 ? : Objective function of a scheduling problem 

 )(S? : Objective function value of a particular schedule S 
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 G: Graph (Chapter IV only) 

 G: Program completion due date 

 Gp: Completion due date of project p 

 N
qh : Units of expediting, nonrenewable resource q used 

 R
qth : Units of expediting, renewable resource q used at time t  

 N
pqH : Units of expediting, nonrenewable resource q remaining after projects 1 through p 

have been added to the program schedule 

 N
qH : Units of expediting, nonrenewable resource q available  

 R
pqtH : Units of expediting, renewable resource q remaining in time t after projects 1 

through p have been added to the program schedule 

 R
qtH : Units of expediting, renewable resource q available at time t 

 i: Index associated with activities / jobs (see also j).  Also, index associated with 
levels of a search tree. 

 Ip: Set of activities / jobs in project p 

 j: Index associated with activities / jobs (see also i) 

 J: Number of activities / jobs 

 Jp: Number of activities / jobs in project p 

 min
pJ : Minimum number of activities / jobs in project p 

 max
pJ : Maximum number of activities / jobs in project p 

 k: Index associated with solutions to a problem.  Also, used generically as in “k-best” 
solutions 

 pK : Number of solutions to project p 

 min
pqK : Minimum total demand for resource q in project p 

 max
pqK : Maximum total demand for resource q in project p 

 lpi: Late start time of activity p(i) 

 Lp: Lag coefficient of project p 

 min
pL : Minimum lag coefficient of project p 

 max
pL : Maximum lag coefficient of project p 

 ? ?µLB : Lower bound on solution to Problem (P) 
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 LFp: Fraction of arcs in project p which denote generalized precedence 

 min
pLL : Lower bound on the minimum lag times for project p 

 max
pLL : Upper bound on the minimum lag times for project p 

 min
pLU : Lower bound on the maximum lag times for project p 

 max
pLU : Upper bound on the maximum lag times for project p 

 k
p? : Zero-one variable associated with the kth solution to project p 

 ? : Vector of variables ?  representing solution to Sweeney-Murphy Master Problem 

 mj: Execution mode of activity j 

 
pkM : Set of mode assignments associated with solution pk  

 min
pM : Minimum number of modes per activity in project p 

 max
pM : Maximum number of modes per activity in project p 

 piM : Set (or number) of execution modes for activity i of project p 

 min
0pMC : Minimum base mode cost 

 max
0pMC : Maximum base mode cost 

 min
1pMC : Minimum mode cost increment 

 max
1pMC : Maximum mode cost increment 

 m: J-tuple of the execution modes of each activity j, j = 1, … , J 

 µ : Lagrangian multipliers used in Sweeney-Murphy Decomposition 

 nd: Number of disjunctive arcs in a graph 

 N: Set of network nodes (Chapter IV only) 

 Ni: Set of activities which have an explicit generalized precedence relationship with 
activity i (see Definition 4-16) 

 *
iN : Set of activities which have an implicit generalized precedence relationship with 

activity i (see Definition 4-17) 

 Np: Set of generalized precedence relationships in project p 

 Oi: Set of activities which precede activity i 

 Op: Set of standard precedence relations within project p 

 p: Index associated with projects 

 p(i): Activity i of project p  
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 P: Restrictiveness of a graph 

 ? ?1GP ?p : Probability of time-increasing activity costs for project p 

 ? ?2GP ?p : Probability of time-decreasing activity costs for project p 

 )1(P ?Fp? : Probability of duration-constant demands for resource type ?  for project p 

 )2(P ?Fp? : Probability of duration-nonincreasing demands for resource type ?  for project p 

 P: Number / set of  projects in a multi-project program 

 min
pP : Maximum number of predecessors per activity for project p 

 min
pJP : Minimum number of finish activities in project p 

 max
pJP : Maximum number of finish activities in project p 

 00PEN : Program base penalty 

 01PEN : Program penalty increment 

 min
0pPEN : Minimum project base penalty 

 max
0pPEN : Maximum project base penalty 

 min
1pPEN : Minimum project penalty increment 

 max
1pPEN : Maximum project penalty increment 

 P: Denotes a scheduling problem 

 N
qp : Price charged to a project for nonrenewable resource q 

 R
qtp : Price charged to a project for renewable resource q in time period t 

 ? : Number of possible permutations of a number sequence (Chapter IV only) 

 ? : Total cost difference between a time only and a resource feasible schedules 

 NQ : Set of all nonrenewable resources 

 NQ0 : Set of program-level nonrenewable resources 

 N
pQ : Set of nonrenewable resources unique to project p 

 RQ : Set of all renewable resources 

 RQ0 : Set of program-level renewable resources 

 R
pQ : Set of renewable resources unique to project p 
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 min
?pQ : Minimum number of resources of type ?  requested per job in project p 

 max
?pQ : Maximum number of resources of type ?  requested per job in project p 

 rij: Binary variable: 1, if activity j is reachable from activity i; 0, otherwise 

 N
qimi

r : Units of nonrenewable resource q required by activity i in mode mi 

 N
k p

r : Total demand by solution pk for nonrenewable resource q  

 N
pimqr : Units of nonrenewable resource q required by activity p(i) in mode m 

 R
qimi

r : Units of renewable resource q required by activity i in mode mi 

 R
tk p

r : Total demand by solution pk for nonrenewable resource q at time t 

 R
pimqr : Units of renewable resource q required by activity p(i) in mode m 

 min
?pr : Minimum resource demand for resource type ?  for project p 

 max
?pr : Maximum resource demand for resource type ?  for project p 

 RT: Restrictiveness measure of Thesen 

 N
pqR : Units of nonrenewable resource q remaining after projects 1 through p have been 

added to the program schedule 

 R
pqtR : Units of renewable resource q remaining in time t after projects 1 through p have 

been added to the program schedule 

 N
qR : Units of nonrenewable resource q available  

 R
qtR : Units of renewable resource q available at time t  

 ?pRF : Resource factor of resource type ?  for project p 

 min
?pRS : Minimum resource strength for resource type ?  for project p 

 max
?pRS : Maximum resource strength for resource type ?  for project p 

 R: Reachability matrix  

 p? : Release date of project p 

 min
p? : Minimum release date of project p 

 max
p? : Maximum release date of project p 

 sj: Start time of activity j 
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 Si: Set of activities which succeed activity i 

 
pkS : Set of start time assignments associated with solution pk  

 max
pS : Maximum number of successors per activity for project p 

 min
1pS : Minimum number of start activities in project p 

 max
1pS : Maximum number of start activities in project p 

 s: J-tuple of the start time of each activity j, j = 1, … , J 

 S: Schedule of problem P 

 UB: Upper bound on solution to Problem (P) 

 tolCNC: Tolerance on coefficient of network complexity 

 tolTH: Tolerance on Thesen Restrictiveness 

 T: Dummy terminal activity of a program 

 Tp: Dummy terminal activity of project p  

 THp: Thesen Restrictiveness measure for project p 

 ? : Resource type 

 min

p
? : Minimum number of resources of type ?  for project p 

 max

p
? : Maximum number of resources of type ?  for project p 

 wpi: [epi, lpi], the start time window of activity p(i) 

 Wij: Directed path from activity i to activity j 

 xpimt: Binary variable: 1, if activity p(i) is executed in mode m and starts at time t; 0, 
otherwise 

 tTp
x : Binary variable: 1, if terminal activity Tp of project p starts at time t; 0, otherwise 

 Ttx : Binary variable: 1, program terminal activity T starts at time t; 0, otherwise 

 
pHx : Integer variables associated with the expediting resources of project p 

 px : Vector of variables associated with project p 

 k
py : kth solution to project p 

 z: Objective function value of a mathematical programming problem 
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Appendix B.  PAGER Input 

 

This appendix provides an example of a Specification File used to define the parameters 

required by the Program Attributes Generator with Expediting Resources (PAGER). 

Problem Generator Input 

************************************************************************ 
SPECIFICATIONS:                                                          
************************************************************************ 
GENERAL INFORMATION -                                                    
Problem Name                        : Test Program                       
************************************************************************ 
PROGRAM -                                                                
Number of Projects                  : 4                                  
Minimum Program Due Date Factor     : 0.00                               
Maximum Program Due Date Factor     : 0.00                               
************************************************************************ 
PROJECTS -                           <---------FOR EACH PROJECT--------> 
Minimum Number of Jobs              : 4 4 4 4 4                          
Maximum Number of Jobs              : 4 4 4 4 4                          
Minimum Project Release Dates       : 1 1 1 1 1                          
Maximum Project Release Dates       : 1 1 1 1 1                          
Minimum Project Due Date Factors    : 0.00 0.00 0.00 0.00 0.00           
Maximum Project Due Date Factors    : 0.00 0.00 0.00 0.00 0.00           
************************************************************************ 
MODES -                              <---------FOR EACH PROJECT--------> 
Minimum Number of Job Modes         : 1 1 1 1 1                          
Maximum Number of Job Modes         : 1 1 1 1 1                          
Minimum Job Duration                : 1 1 1 1 1                          
Maximum Job Duration                : 10 10 10 10 10                     
************************************************************************ 
PROJECT NETWORKS -                   <---------FOR EACH PROJECT--------> 
Minimum Number of Start Jobs        : 1 1 1 1 1                          
Maximum Number of Start Jobs        : 1000 1000 1000 1000 1000           
Minimum Number of End Jobs          : 1 1 1 1 1                          
Maximum Number of End Jobs          : 1000 1000 1000 1000 1000           
Maximum Successors Per Job          : 1000 1000 1000 1000 1000           
Maximum Predecessors Per Job        : 1000 1000 1000 1000 1000           
Min Start-Start Lag Fraction        : 0.20 0.20 0.20 0.20 0.20           
Max Start-Start Lag Fraction        : 0.20 0.20 0.20 0.20 0.20           
Min on Lower Bound of Lag           : -0.2 -0.2 -0.2 -0.2 -0.2           
Max on Lower Bound of Lag           : 0.2 0.2 0.2 0.2 0.2                
Min on Upper Bound of Lag           : 0.4 0.4 0.4 0.4 0.4                
Max on Upper Bound of Lag           : 0.8 0.8 0.8 0.8 0.8                
Use CNC (Arcs/Nodes) (1=Yes)        : 0                                  
Network Complexity Tolerance        : 0.00                               
CNC (Arcs/Nodes)                    : 0.00 0.00 0.00 0.00 0.0            
Use Thesen Restrictiveness (1=Yes)  : 1                                  
Restrictiveness Tolerance           : 0.1                                
Thesen Restrictiveness              : 0.75 0.75 0.75 0.75 0.75           
************************************************************************ 
PROGRAM NETWORK -                                                        
Min Proj Lag for Each Pair          : 0.00 0.00 0.00 0.00                
Max Proj Lag for Each Pair          : 0.00 0.00 0.00 0.00                
Maximum Inter-Proj Successors/Job   : 1000                               
Maximum Inter-Proj Predecessors/Job : 1000                               
Min Start-Start Lag Fraction        : 0.20                               
Max Start-Start Lag Fraction        : 0.20                               
Min on Lower Bound of Lag           : -0.2                               
Max on Lower Bound of Lag           : 0.2                                
Min on Upper Bound of Lag           : 0.4                                
Max on Upper Bound of Lag           : 0.8                                
Program-Level CNC                   : 0.00                               
Program-Level Restrictiveness       : 0.25                               
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************************************************************************ 
RENEWABLE RESOURCES -               PROGRAM   <----FOR EACH PROJECT----> 
Min Number of Renewable Resources   : 3 1 1 1 1 1                        
Max Number of Renewable Resources   : 3 1 1 1 1 1                        
Min Number of Res Requested Per Job : 0 0 0 0 0 0                        
Max Number of Res Requested Per Job : 10 10 10 10 10 10                  
Renewable Resource Factor           : 1.00 1.00 1.00 1.00 1.00 1.00      
Minimum Per-Period Res Demand       : 1 1 1 1 1 1                        
Maximum Per-Period Res Demand       : 10 10 10 10 10 10                  
Minimum Renew Resource Strength     : 0.50 1.00 1.00 1.00 1.00 1.00      
Maximum Renew Resource Strength     : 0.50 1.00 1.00 1.00 1.00 1.00      
Min Exped Renew Resource Strength   : 0.50 0.00 0.00 0.00 0.00 0.00      
Max Exped Renew Resource Strength   : 0.50 0.00 0.00 0.00 0.00 0.00      
Prob of Duration Constant Demand    : 0.00 0.00 0.00 0.00 0.00 0.00      
************************************************************************ 
NONRENEWABLE RESOURCES -            PROGRAM   <----FOR EACH PROJECT----> 
Min Number of Nonrenewable Resources: 3 1 1 1 1 1                        
Max Number of Nonrenewable Resources: 3 1 1 1 1 1                        
Min Number of Res Requested Per Job : 0 0 0 0 0 0                        
Max Number of Res Requested Per Job : 10 10 10 10 10 10                  
Nonrenewable Resource Factor        : 1.00 1.00 1.00 1.00 1.00 1.00      
Minimum Resource Demand             : 1 1 1 1 1 1                        
Maximum Resource Demand             : 10 10 10 10 10 10                  
Minimum Nonrenew Resource Strength  : 0.50 1.00 1.00 1.00 1.00 1.00      
Maximum Nonrenew Resource Strength  : 0.50 1.00 1.00 1.00 1.00 1.00      
Min Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00      
Max Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00      
Prob of Duration Constant Demand    : 0 0 0 0 0 1                        
************************************************************************ 
OBJECTIVE FUNCTION -                                                     
Completion Penalty   (1 = Include)  : 1                                  
Mode Costs           (1 = Include)  : 1                                  
Exped Resource Costs (1 = Include)  : 1                                  
************************************************************************ 
COSTS DATA - (*/** => Value is Fraction of Program Penalty Min/Increment 
Program Penalty Minimum and Incr    : 1000 1000                          
Project Penalty Minimum Range *     : 0.50 0.75                          
Project Penalty Increment Range **  : 0.40 0.50                          
Base Mode Cost Range *              : 0.05 0.10                          
Mode Cost Increment Range **        : 0.05 0.10                          
Prob of Time-Increasing Job Costs   : 1.00                               
Prob of Time-Decreasing Job Costs   : 0.00                               
Exped Renew Resource Cost Range *   : 0.00 0.05                          
Exped Nonrenew Resource Cost Range *: 0.00 0.05                          
************************************************************************ 
TOLERANCES -                                                             
Resource Factor                     : 0.1                                
Maximum Trials                      : 200                                
************************************************************************ 
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Appendix C.  PAGER Output 

 

This appendix provides an example of a problem file generated by the Program Attributes 

Generator with Expediting Resources (PAGER).  The problem statement is in PAGER format. 

Problem File 

************************************************************************ 
Program Name                     : Test Program                       
Number of Projects               : 4 
************************************************************************ 
                              GENERAL DATA: 
Proj      Release Due   Proj   MPM  Renewable Nonrenewable 
 No  Jobs  Date   Date Horizon Time Resources  Resources   
---- ---- ------- ---- ------- ---- --------- ------------ 
  0   18      1     25    54     25     3          3 
  1    4      1     10    10     10     1          1 
  2    4      1     10    10     10     1          1 
  3    4      1     19    19     19     1          1 
  4    4      1     15    15     15     1          1 
************************************************************************ 
                    PROGRAM-AS-PROJECT CONVERSION DATA 
SUCCESSORS: 
    Proj Job  No    No                
 No  No   No Mode Success Successors  
--- ---- --- ---- ------- ---------------------------------------- 
  1   0    1   1      4     2   6  10  14 
  2   1    1   1      1     3 
  3   1    2   1      1     4 
  4   1    3   1      1     5 
  5   1    4   1      1    18 
  6   2    1   1      1     7 
  7   2    2   1      1     8 
  8   2    3   1      1     9 
  9   2    4   1      2    18  16 
 10   3    1   1      1    11 
 11   3    2   1      2    12   6 
 12   3    3   1      1    13 
 13   3    4   1      1    18 
 14   4    1   1      1    15 
 15   4    2   1      1    16 
 16   4    3   1      1    17 
 17   4    4   1      1    18 
 18   0   18   1      0 
************************************************************************ 
START-START LAGS: 
Job Lag Lag Min Max 
 No  No Job Lag Lag 
--- --- --- --- --- 
  0   0   0   0   0 
  7   1  15   0   7 
************************************************************************ 
MODE DATA WITH RESOURCES: 
Job Mode      Resource Requirements 
 No  No  Dur    R 1  R 2  R 3  R 4  R 5  R 6  R 7    N 1  N 2  N 3  N 4  N 5  N 6  N 7 
--- ---- ---    ---  ---  ---  ---  ---  ---  ---    ---  ---  ---  ---  ---  ---  --- 
  1   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
  2   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
  3   1    3    3   10    7    3    0    0    0      4    8    3    8    0    0    0 
  4   1    7    2   10    6    4    0    0    0      3    9    1    3    0    0    0 
  5   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
  6   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
  7   1    2    9    5    6    0    7    0    0      4    7    8    0    3    0    0 
  8   1    8    9   10    9    0    1    0    0      8    5    3    0    2    0    0 
  9   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
 10   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
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 11   1    9    3    9    3    0    0    2    0      9    4    1    0    0    3    0 
 12   1   10    7    9    5    0    0    7    0      4    6    7    0    0    5    0 
 13   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
 14   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
 15   1    9    7    7    6    0    0    0    4      3    8    6    0    0    0    5 
 16   1    6    8    8    3    0    0    0    2      4    2    8    0    0    0    6 
 17   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
 18   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
************************************************************************ 
REGULAR RENEWABLE RESOURCE AVAILABILITY: 
Units   
R 1   R 2   R 3   R 4   R 5   R 6   R 7 
----  ----  ----  ----  ----  ----  ---- 
  17    21    16     4     7     7     4 
************************************************************************ 
EXPEDITING RENEWABLE RESOURCE AVAILABILITY: 
Units/Cost   
R 1      R 2      R 3      R 4      R 5      R 6      R 7 
-------- -------- -------- -------- -------- -------- -------- 
   8  42   11  15    7  16    0  39    0  22    0  18    0  24 
************************************************************************ 
REGULAR NONRENEWABLE RESOURCE AVAILABILITY: 
Units   
N 1   N 2   N 3   N 4   N 5   N 6   N 7 
----  ----  ----  ----  ----  ----  ---- 
  39    49    37    11     5     8    11 
************************************************************************ 
EXPEDITING NONRENEWABLE RESOURCE AVAILABILITY: 
Units/Cost   
 N 1      N 2      N 3      N 4      N 5      N 6      N 7 
-------- -------- -------- -------- -------- -------- -------- 
  20  22   25  15   19  40    0  22    0  11    0  36    0   9 
************************************************************************ 
COMPLETION/MODE COSTS: 
Job Mode  Base  Incr Start End   
 No  No   Cost  Cost Time  Time  
--- ---- ------ ---- ----- ----- 
  1   1       0    0     1    30 
  2   1       0    0     1    45 
  3   1      64   72     1    45 
  4   1      79   70     4    48 
  5   1     691  425    10    54 
  6   1       0    0     1    38 
  7   1      61   78     1    39 
  8   1      72   80     3    41 
  9   1     583  457    10    48 
 10   1       0    0     1    30 
 11   1      64   54     1    30 
 12   1      96   54    10    45 
 13   1     580  497    19    54 
 14   1       0    0     1    40 
 15   1      72   78     1    40 
 16   1      90   89    10    49 
 17   1     654  487    15    54 
 18   1    1000 1000    25    54 
************************************************************************ 
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Appendix D.  Scheduler Output 

 

This appendix provides an example of an output file generated by the Scheduler used to solve 

single-project instances of the Multi-Modal, Resource-Constrained, Multi-Project Scheduling 

Problem with Generalized Precedence and Expediting Resources (MRCMPSP-GPR/EXP). 
 

************************************************************************ 
Program Name                     : Test Program                       
Number of Projects               :          1 
Date                             :   03/19/01 
Time                             :   08:58:30 
Number of Solutions              :          1 
Total Solution Time (Seconds)    :        .41 
************************************************************************ 
Solns Discarded-Project 1        :         37 
************************************************************************ 
Solution      1:   Objective Function Value =      26391 
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   2       10 
   4   3       14 
   5   1       17 
   6   1        1 
   7   2       14 
   8   1        1 
   9   1       18 
  10   1        1 
  11   3        1 
  12   3        5 
  13   1       12 
  14   1        1 
  15   2        5 
  16   2        2 
  17   1       13 
  18   1       18 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7  R 8  R 9  R10  R11  R12  R13  R14  R15 
------  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
    2     0    1    0    0    0    0    0    0    0    0    0    0    0    0    0 
    3     0    1    0    0    0    0    0    0    0    0    0    0    0    0    0 
    4     0    1    0    0    0    0    0    0    0    0    0    0    0    0    0 
    5     1    0    3    0    0    0    0    0    0    0    0    0    0    0    0 
    6     1    0    3    0    0    0    0    0    0    0    0    0    0    0    0 
    7     1    0    3    0    0    0    0    0    0    0    0    0    0    0    0 
    8     1    0    3    0    0    0    0    0    0    0    0    0    0    0    0 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7  N 8  N 9  N10  N11  N12  N13  N14  N15 
---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    5    7    6    0    0    0    1    1    0 
************************************************************************ 
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Appendix E.  Sample Decomposition Algorithm Output 

 

This appendix provides an example of an output file generated by the decomposition algorithm 

used to solve multi-project instances of the Multi-Modal, Resource-Constrained, Multi-Project 

Scheduling Problem with Generalized Precedence and Expediting Resources. 
 
************************************************** 
Program Name                     : Test Program                       
Number of Projects               :          4 
Date                             :   03/24/01 
Time                             :   15:03:54 
Number of Solutions              :       1000 
Total Solution Time (Seconds)    :       1.06 
************************************************** 
Solns Discarded-Project 0        :       1921 
Solns Discarded-Project 1        :         18 
Solns Discarded-Project 2        :          0 
Solns Discarded-Project 3        :          0 
Solns Discarded-Project 4        :          0 
************************************************** 
Solution      1:    
Objective Function Value =      19680 
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        4 
   5   1       10 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       10 
  13   1       19 
  14   1        1 
  15   1       11 
  16   1       20 
  17   1       25 
  18   1       25 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   10     1    3    1    0    0    0    0 
   11     6    0    1    0    0    0    0 
   12     6    5    4    0    0    0    0 
   13     6    5    4    0    0    0    0 
   14     6    5    4    0    0    0    0 
   15     6    5    4    0    0    0    0 
   16     6    5    4    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
   19     6    5    4    0    0    0    0 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 
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APPENDIX F.  Best Solutions to (MP) Versus (P) 

 

Overview 

This appendix provides an example showing that the k-best solutions to Problem (MP) are not 

necessarily the k-best solutions to Problem (P), as described in Chapter 6.  The following sections 

contain: (1) the PAGER input used to generate the example, (2) the resulting problem statement, 

and (3) key solutions to the problem when solved using the Scheduler and when solved using the 

decomposition approach.  The Scheduler solutions are the best solutions to Problem (P), while the 

decomposition solutions are the best solutions to Problem (MP).  Note that Solutions 1 and 2 from 

both approaches are identical.  Solution 1000 to (MP) is greater than that to (P).  The 1000-th best 

solution to (P) is not even contained in the set of the 1000 best solutions to (MP).  In fact, the 

objective function values of Solutions 99 and 100 from the decomposition approach straddle the 

value of the 1000-th best solution to (P).  

Problem Generation Input 

************************************************************************ 
SPECIFICATIONS:                                                          
************************************************************************ 
GENERAL INFORMATION -                                                    
Problem Name                        : Test Program                       
************************************************************************ 
PROGRAM -                                                                
Number of Projects                  : 4                                  
Minimum Program Due Date Factor     : 0.00                               
Maximum Program Due Date Factor     : 0.00                               
************************************************************************ 
PROJECTS -                           <---------FOR EACH PROJECT--------> 
Minimum Number of Jobs              : 4 4 4 4 4                          
Maximum Number of Jobs              : 4 4 4 4 4                          
Minimum Project Release Dates       : 1 1 1 1 1                          
Maximum Project Release Dates       : 1 1 1 1 1                          
Minimum Project Due Date Factors    : 0.00 0.00 0.00 0.00 0.00           
Maximum Project Due Date Factors    : 0.00 0.00 0.00 0.00 0.00           
************************************************************************ 
MODES -                              <---------FOR EACH PROJECT--------> 
Minimum Number of Job Modes         : 1 1 1 1 1                          
Maximum Number of Job Modes         : 1 1 1 1 1                          
Minimum Job Duration                : 1 1 1 1 1                          
Maximum Job Duration                : 10 10 10 10 10                     
************************************************************************ 
PROJECT NETWORKS -                   <---------FOR EACH PROJECT--------> 
Minimum Number of Start Jobs        : 1 1 1 1 1                          
Maximum Number of Start Jobs        : 1000 1000 1000 1000 1000           
Minimum Number of End Jobs          : 1 1 1 1 1                          
Maximum Number of End Jobs          : 1000 1000 1000 1000 1000           
Maximum Successors Per Job          : 1000 1000 1000 1000 1000           
Maximum Predecessors Per Job        : 1000 1000 1000 1000 1000           
Min Start-Start Lag Fraction        : 0.20 0.20 0.20 0.20 0.20           
Max Start-Start Lag Fraction        : 0.20 0.20 0.20 0.20 0.20           
Min on Lower Bound of Lag           : -0.2 -0.2 -0.2 -0.2 -0.2           
Max on Lower Bound of Lag           : 0.2 0.2 0.2 0.2 0.2                
Min on Upper Bound of Lag           : 0.4 0.4 0.4 0.4 0.4                
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Max on Upper Bound of Lag           : 0.8 0.8 0.8 0.8 0.8                
Use CNC (Arcs/Nodes) (1=Yes)        : 0                                  
Network Complexity Tolerance        : 0.00                               
CNC (Arcs/Nodes)                    : 0.00 0.00 0.00 0.00 0.0            
Use Thesen Restrictiveness (1=Yes)  : 1                                  
Restrictiveness Tolerance           : 0.1                                
Thesen Restrictiveness              : 0.75 0.75 0.75 0.75 0.75           
************************************************************************ 
PROGRAM NETWORK -                                                        
Min Proj Lag for Each Pair          : 0.00 0.00 0.00 0.00                
Max Proj Lag for Each Pair          : 0.00 0.00 0.00 0.00                
Maximum Inter-Proj Successors/Job   : 1000                               
Maximum Inter-Proj Predecessors/Job : 1000                               
Min Start-Start Lag Fraction        : 0.20                               
Max Start-Start Lag Fraction        : 0.20                               
Min on Lower Bound of Lag           : -0.2                               
Max on Lower Bound of Lag           : 0.2                                
Min on Upper Bound of Lag           : 0.4                                
Max on Upper Bound of Lag           : 0.8                                
Program-Level CNC                   : 0.00                               
Program-Level Restrictiveness       : 0.25                               
************************************************************************ 
RENEWABLE RESOURCES -               PROGRAM   <----FOR EACH PROJECT----> 
Min Number of Renewable Resources   : 3 1 1 1 1 1                        
Max Number of Renewable Resources   : 3 1 1 1 1 1                        
Min Number of Res Requested Per Job : 0 0 0 0 0 0                        
Max Number of Res Requested Per Job : 10 10 10 10 10 10                  
Renewable Resource Factor           : 1.00 1.00 1.00 1.00 1.00 1.00      
Minimum Per-Period Res Demand       : 1 1 1 1 1 1                        
Maximum Per-Period Res Demand       : 10 10 10 10 10 10                  
Minimum Renew Resource Strength     : 0.50 1.00 1.00 1.00 1.00 1.00      
Maximum Renew Resource Strength     : 0.50 1.00 1.00 1.00 1.00 1.00      
Min Exped Renew Resource Strength   : 0.50 0.00 0.00 0.00 0.00 0.00      
Max Exped Renew Resource Strength   : 0.50 0.00 0.00 0.00 0.00 0.00      
Prob of Duration Constant Demand    : 0.00 0.00 0.00 0.00 0.00 0.00      
************************************************************************ 
NONRENEWABLE RESOURCES -            PROGRAM   <----FOR EACH PROJECT----> 
Min Number of Nonrenewable Resources: 3 1 1 1 1 1                        
Max Number of Nonrenewable Resources: 3 1 1 1 1 1                        
Min Number of Res Requested Per Job : 0 0 0 0 0 0                        
Max Number of Res Requested Per Job : 10 10 10 10 10 10                  
Nonrenewable Resource Factor        : 1.00 1.00 1.00 1.00 1.00 1.00      
Minimum Resource Demand             : 1 1 1 1 1 1                        
Maximum Resource Demand             : 10 10 10 10 10 10                  
Minimum Nonrenew Resource Strength  : 0.50 1.00 1.00 1.00 1.00 1.00      
Maximum Nonrenew Resource Strength  : 0.50 1.00 1.00 1.00 1.00 1.00      
Min Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00      
Max Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00      
Prob of Duration Constant Demand    : 0 0 0 0 0 1                        
************************************************************************ 
OBJECTIVE FUNCTION -                                                     
Completion Penalty   (1 = Include)  : 1                                  
Mode Costs           (1 = Include)  : 1                                  
Exped Resource Costs (1 = Include)  : 1                                  
************************************************************************ 
COSTS DATA - (*/** => Value is Fraction of Program Penalty Min/Increment 
Program Penalty Minimum and Incr    : 1000 1000                          
Project Penalty Minimum Range *     : 0.50 0.75                          
Project Penalty Increment Range **  : 0.40 0.50                          
Base Mode Cost Range *              : 0.05 0.10                          
Mode Cost Increment Range **        : 0.05 0.10                          
Prob of Time-Increasing Job Costs   : 1.00                               
Prob of Time-Decreasing Job Costs   : 0.00                               
Exped Renew Resource Cost Range *   : 0.00 0.05                          
Exped Nonrenew Resource Cost Range *: 0.00 0.05                          
************************************************************************ 
TOLERANCES -                                                             
Resource Factor                     : 0.1                                
Maximum Trials                      : 200                                
************************************************************************ 
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Problem File 

************************************************************************ 
Program Name                     : Test Program                       
Number of Projects               : 4 
************************************************************************ 
                              GENERAL DATA: 
Proj      Release Due   Proj   MPM  Renewable Nonrenewable 
 No  Jobs  Date   Date Horizon Time Resources  Resources   
---- ---- ------- ---- ------- ---- --------- ------------ 
  0   18      1     25    54     25     3          3 
  1    4      1     10    10     10     1          1 
  2    4      1     10    10     10     1          1 
  3    4      1     19    19     19     1          1 
  4    4      1     15    15     15     1          1 
************************************************************************ 
                    PROGRAM-AS-PROJECT CONVERSION DATA 
SUCCESSORS: 
    Proj Job  No    No                
 No  No   No Mode Success Successors  
--- ---- --- ---- ------- ---------------------------------------- 
  1   0    1   1      4     2   6  10  14 
  2   1    1   1      1     3 
  3   1    2   1      1     4 
  4   1    3   1      1     5 
  5   1    4   1      1    18 
  6   2    1   1      1     7 
  7   2    2   1      1     8 
  8   2    3   1      1     9 
  9   2    4   1      2    18  16 
 10   3    1   1      1    11 
 11   3    2   1      2    12   6 
 12   3    3   1      1    13 
 13   3    4   1      1    18 
 14   4    1   1      1    15 
 15   4    2   1      1    16 
 16   4    3   1      1    17 
 17   4    4   1      1    18 
 18   0   18   1      0 
************************************************************************ 
START-START LAGS: 
Job Lag Lag Min Max 
 No  No Job Lag Lag 
--- --- --- --- --- 
  0   0   0   0   0 
  7   1  15   0   7 
************************************************************************ 
MODE DATA WITH RESOURCES: 
Job Mode      Resource Requirements 
 No  No  Dur    R 1  R 2  R 3  R 4  R 5  R 6  R 7    N 1  N 2  N 3  N 4  N 5  N 6  N 7 
--- ---- ---    ---  ---  ---  ---  ---  ---  ---    ---  ---  ---  ---  ---  ---  --- 
  1   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
  2   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
  3   1    3    3   10    7    3    0    0    0      4    8    3    8    0    0    0 
  4   1    7    2   10    6    4    0    0    0      3    9    1    3    0    0    0 
  5   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
  6   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
  7   1    2    9    5    6    0    7    0    0      4    7    8    0    3    0    0 
  8   1    8    9   10    9    0    1    0    0      8    5    3    0    2    0    0 
  9   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
 10   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
 11   1    9    3    9    3    0    0    2    0      9    4    1    0    0    3    0 
 12   1   10    7    9    5    0    0    7    0      4    6    7    0    0    5    0 
 13   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
 14   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
 15   1    9    7    7    6    0    0    0    4      3    8    6    0    0    0    5 
 16   1    6    8    8    3    0    0    0    2      4    2    8    0    0    0    6 
 17   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
 18   1    0    0    0    0    0    0    0    0      0    0    0    0    0    0    0 
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************************************************************************ 
REGULAR RENEWABLE RESOURCE AVAILABILITY: 
Units   
R 1   R 2   R 3   R 4   R 5   R 6   R 7 
----  ----  ----  ----  ----  ----  ---- 
  17    21    16     4     7     7     4 
************************************************************************ 
EXPEDITING RENEWABLE RESOURCE AVAILABILITY: 
Units/Cost   
R 1      R 2      R 3      R 4      R 5      R 6      R 7 
-------- -------- -------- -------- -------- -------- -------- 
   8  42   11  15    7  16    0  39    0  22    0  18    0  24 
************************************************************************ 
REGULAR NONRENEWABLE RESOURCE AVAILABILITY: 
Units   
N 1   N 2   N 3   N 4   N 5   N 6   N 7 
----  ----  ----  ----  ----  ----  ---- 
  39    49    37    11     5     8    11 
************************************************************************ 
EXPEDITING NONRENEWABLE RESOURCE AVAILABILITY: 
Units/Cost   
 N 1      N 2      N 3      N 4      N 5      N 6      N 7 
-------- -------- -------- -------- -------- -------- -------- 
  20  22   25  15   19  40    0  22    0  11    0  36    0   9 
************************************************************************ 
COMPLETION/MODE COSTS: 
Job Mode  Base  Incr Start End   
 No  No   Cost  Cost Time  Time  
--- ---- ------ ---- ----- ----- 
  1   1       0    0     1    30 
  2   1       0    0     1    45 
  3   1      64   72     1    45 
  4   1      79   70     4    48 
  5   1     691  425    10    54 
  6   1       0    0     1    38 
  7   1      61   78     1    39 
  8   1      72   80     3    41 
  9   1     583  457    10    48 
 10   1       0    0     1    30 
 11   1      64   54     1    30 
 12   1      96   54    10    45 
 13   1     580  497    19    54 
 14   1       0    0     1    40 
 15   1      72   78     1    40 
 16   1      90   89    10    49 
 17   1     654  487    15    54 
 18   1    1000 1000    25    54 
************************************************************************ 
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Key Solutions (1, 2, 99, 100, 1000)

Solutions to (P) – From the Scheduler 
************************************************* 
Program Name                     : Test Program                       
Number of Projects               :          4 
Date                             :   03/24/01 
Time                             :   15:03:52 
Number of Solutions              :       1000  
Total Solution Time (Seconds)    :       1.10 
************************************************* 
Solns Discarded-Project 1        :       5328 
 
 
 
 
************************************************* 
Solution      1:    
Objective Function Value =      19680  
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        4 
   5   1       10 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       10 
  13   1       19 
  14   1        1 
  15   1       11 
  16   1       20 
  17   1       25 
  18   1       25 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   10     1    3    1    0    0    0    0 
   11     6    0    1    0    0    0    0 
   12     6    5    4    0    0    0    0 
   13     6    5    4    0    0    0    0 
   14     6    5    4    0    0    0    0 
   15     6    5    4    0    0    0    0 
   16     6    5    4    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
   19     6    5    4    0    0    0    0 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 

Solutions to (MP) – From Decomposition 
************************************************* 
Program Name                     : Test Program                      
Number of Projects               :          4 
Date                             :   03/24/01 
Time                             :   15:03:54 
Number of Solutions              :       1000  
Total Solution Time (Seconds)    :       1.06 
************************************************* 
Solns Discarded-Project 0        :       1921 
Solns Discarded-Project 1        :         18 
Solns Discarded-Project 2        :          0 
Solns Discarded-Project 3        :          0 
Solns Discarded-Project 4        :          0 
************************************************* 
Solution      1:    
Objective Function Value =      19680  
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        4 
   5   1       10 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       10 
  13   1       19 
  14   1        1 
  15   1       11 
  16   1       20 
  17   1       25 
  18   1       25 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   10     1    3    1    0    0    0    0 
   11     6    0    1    0    0    0    0 
   12     6    5    4    0    0    0    0 
   13     6    5    4    0    0    0    0 
   14     6    5    4    0    0    0    0 
   15     6    5    4    0    0    0    0 
   16     6    5    4    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
   19     6    5    4    0    0    0    0 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 
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************************************************* 
Solution      2:    
Objective Function Value =      19706  
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        4 
   5   1       10 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       10 
  13   1       19 
  14   1        1 
  15   1       10 
  16   1       20 
  17   1       25 
  18   1       25 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   10     8   10    7    0    0    0    0 
   11     6    0    1    0    0    0    0 
   12     6    5    4    0    0    0    0 
   13     6    5    4    0    0    0    0 
   14     6    5    4    0    0    0    0 
   15     6    5    4    0    0    0    0 
   16     6    5    4    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 

************************************************* 
Solution      2:    
Objective Function Value =      19706  
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        4 
   5   1       10 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       10 
  13   1       19 
  14   1        1 
  15   1       10 
  16   1       20 
  17   1       25 
  18   1       25 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   10     8   10    7    0    0    0    0 
   11     6    0    1    0    0    0    0 
   12     6    5    4    0    0    0    0 
   13     6    5    4    0    0    0    0 
   14     6    5    4    0    0    0    0 
   15     6    5    4    0    0    0    0 
   16     6    5    4    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 
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************************************************* 
Solution     99:    
Objective Function Value =      22191  
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        5 
   5   1       11 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       12 
  13   1       21 
  14   1        1 
  15   1       10 
  16   1       21 
  17   1       26 
  18   1       26 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   10     1    1    2    0    0    0    0 
   11     1    1    2    0    0    0    0 
   12     6    5    4    0    0    0    0 
   13     6    5    4    0    0    0    0 
   14     6    5    4    0    0    0    0 
   15     6    5    4    0    0    0    0 
   16     6    5    4    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 

************************************************* 
Solution     99:    
Objective Function Value =      24704  
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        4 
   5   1       10 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       18 
  13   1       27 
  14   1        1 
  15   1       12 
  16   1       22 
  17   1       27 
  18   1       27 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   18     6    5    4    0    0    0    0 
   19     6    5    4    0    0    0    0 
 
 
 
 
 
 
 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 



F-8 

************************************************* 
Solution    100:    
Objective Function Value =      22196  
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        4 
   5   1       10 
   6   1        9 
   7   1       11 
   8   1       13 
   9   1       20 
  10   1        1 
  11   1        1 
  12   1       11 
  13   1       20 
  14   1        1 
  15   1       11 
  16   1       21 
  17   1       26 
  18   1       26 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   11     6    0    1    0    0    0    0 
   12     6    0    1    0    0    0    0 
   13     6    5    4    0    0    0    0 
   14     6    5    4    0    0    0    0 
   15     6    5    4    0    0    0    0 
   16     6    5    4    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
   19     6    5    4    0    0    0    0 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 

************************************************* 
Solution    100:    
Objective Function Value =      247 69 
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        4 
   5   1       10 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       11 
  13   1       20 
  14   1        1 
  15   1       12 
  16   1       23 
  17   1       28 
  18   1       28 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   12     6    5    4    0    0    0    0 
   13     6    5    4    0    0    0    0 
   14     6    5    4    0    0    0    0 
   15     6    5    4    0    0    0    0 
   16     6    5    4    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
   19     6    5    4    0    0    0    0 
 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 
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************************************************* 
Solution   1000:    
Objective Function Value =      24752  
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        4 
   4   1        8 
   5   1       14 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       17 
  13   1       26 
  14   1        1 
  15   1       10 
  16   1       20 
  17   1       25 
  18   1       26 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   10     1    1    2    0    0    0    0 
   11     1    1    2    0    0    0    0 
   12     1    6    5    0    0    0    0 
   13     1    6    5    0    0    0    0 
   14     1    6    5    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 
************************************************* 

************************************************* 
Solution   1000:    
Objective Function Value =      32760  
 
 Job Mode Start Time 
---- ---- ---------- 
   1   1        1 
   2   1        1 
   3   1        1 
   4   1        5 
   5   1       11 
   6   1        9 
   7   1       10 
   8   1       12 
   9   1       19 
  10   1        1 
  11   1        1 
  12   1       17 
  13   1       26 
  14   1        1 
  15   1       13 
  16   1       26 
  17   1       31 
  18   1       31 
 
Expediting Renewable Resource Usage: 
 Time   Units   
Period  R 1  R 2  R 3  R 4  R 5  R 6  R 7 
------  ---  ---  ---  ---  ---  ---  --- 
    0     0    0    0    0    0    0    0 
   17     6    5    4    0    0    0    0 
   18     6    5    4    0    0    0    0 
   19     6    5    4    0    0    0    0 
 
 
 
 
 
Expediting Nonrenewable Resource Usage: 
Units   
N 1  N 2  N 3  N 4  N 5  N 6  N 7 
---  ---  ---  ---  ---  ---  --- 
  0    0    0    0    0    0    0 
************************************************* 
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